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ABSTRACT

Recently, a time-frequency approach for testing stationarity

was proposed. However, this method inefficiently detects

nonstationarities of the first-order. Here, we present two con-

tributions that improve the test performance and allow the

detection of first-order evolutions. The first one is to use an

adequate distance measure. The second is a modification of

the method in order to consider the spectral content from the

signal itself when computing the distances.

Index Terms— First-order stationarity, Time-frequency

analysis, Distances, Marginals.

1. INTRODUCTION

In statistical signal processing, many approaches rely on the

assumption of stationarity. In the broad sense, it is defined as

the invariance of the statistical properties relative to an abso-

lute time [1]. In practice, this definition is relaxed and it is

common to consider just the wide-sense stationarity (WSS),

which is the invariance of second-order statistics.

General techniques for analyzing nonstationary signals do

not exist. Here, we focus on approaches of frequency nature,

by specifically analyzing the Power Spectrum Density (PSD).

For WSS signals, the PSD is obtained by taking the Fourier

transform of the autocorrelation sequence, since it depends on

a single index. Nonstationary signals result in a time-varying

PSD, which reflects the time evolution of the second proper-

ties of the process.

There are several ways to represent the time-varying spec-

trum of a nonstationary process. As a time-frequency (TF)

representation, the estimates of the Wigner-Ville Spectrum
(WVS) occupy a highlighted position. Other TF representa-

tions do not have as many good features as the WVS does.

For only one realization one may find several estimators for

the WVS. Due to its good properties, many authors have been

proposing to use the WVS to represent the evolutionary PSD

[1].

Among the recent articles, a very interesting stationarity

test based on WVS estimates has been published [2]. The

method tests stationarity given only one realization and rela-

tive to some observation scale. It is performed by gathering a

collection of surrogates as a stationarized version of the sig-

nal. Then, by using an adequate dissimilarity measure, the

distances between local and global spectra are computed for

both the stationary version and the signal itself. The disper-

sion of these distances is used as a statistic for the stationarity

test.

After applying the stationarity test to different signals,

we observed an incapacity of detecting first-order evolutions.

The purpose of this paper is to propose two modifications to

the approach of [2], in order to increase the classification ac-

curacies and allow the detection of an evolutionary mean.

The structure of the paper is as follows. Section 2 presents

the stationarity test. Section 3 discusses the distance mea-

sures. Here, our first contribution is presented, which is to

use an alternative distance. In Section 4 the test is applied to

some synthetic signals. Our second contribution is shown in

Section 5, which is taking the spectral content into account in

order to detect first-order evolutions. Results obtained after

this modification are also shown in this section. Finally, our

conclusions are drawn in Section 6.

2. TESTING STATIONARITY WITH SURROGATES

According to [2], stationarity should not be seen as an ab-

solute property, but related to a given duration or observation

scale. Over this interval, a stationary signal should not exhibit

evolution of its time-varying spectrum. It means that the local

spectra S(tn, f) at all different time instants are statistically

equal to the global average spectrum

〈S(tn, f)〉n :=
1

N

N∑
n=1

S(tn, f), (1)

where N is the number of time positions {tn, n = 1, ..., N}
in which the local spectra are computed. The spectra are

obtained by estimates of the Wigner-Ville Spectrum (WVS),

which reduces to the PSD when the signal turns out to be sta-

tionary. The WVS is estimated using multitaper spectrograms

SK(t, f) =
1

K

K−1∑
k=0

Shk(t, f). (2)

In (2), for a given time point in {tn, n = 1, ..., N}, the mul-

titaper spectrogram SK(t, f) is obtained by averaging K dif-
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ferent spectrograms. This technique aims at reducing the vari-

ance of the estimation by projecting the observation on a fam-

ily of orthonormal basis functions {hk(t), k ∈ N}. Here, the

Hermite functions were chosen as such basis. The time posi-

tions tn, the spacing Δt = tn+1−tn, and the frequency range

of the multitaper spectrograms are computed considering the

length of the signal and an adjustable fraction of the chosen

window.

The originality of the method is to give significance to the

fluctuations of the local spectra by building stationarized ref-

erences of the signal (surrogates) using just the available data.

Each surrogate s(t) has the same global PSD as the original

signal while being stationary. By comparing the stationary

version and the original signal, a hypothesis test is performed

to check if fluctuations of local time-varying spectrum around

the global average spectrum are statistically expected in the

stationarized references. If they are not, we may infer that

the variation between local and global spectra is due to the

nonstationarity of the process.

Nonstationary signals have their spectral content spread

in time differently from stationary ones. Hence, for an identi-

cal marginal spectrum over the same observation scale, we

may expect some time-organized structures that are exclu-

sive of nonstationary signals. The surrogates are obtained

by destroying the organized phase structure controlling the

supposed nonstationarity. The signal is Fourier transformed

and its phase is replaced by a uniform distributed sequence,

while keeping the magnitude unchanged. By applying the in-

verse Fourier transform we obtain as many stationary surro-

gates as phase randomizations are performed. After obtaining

the J surrogates sj(t), j = 1, ..., J , a distance between local

and global spectra is computed for each of them.

{c(sj)n := D(Ssj ,K(tn, f), 〈Ssj ,K(tn, f)〉n), n = 1, ..., N,
j = 1, ..., J}.

(3)

In (3), the distance D(., .) denotes some dissimilarity

measure in frequency. The null hypothesis of stationarity is

characterized by the distribution of the variances of (3). For

the signal itself, the distances between spectra are given in

the vector

{c(x)n := D(SK(tn, f), 〈SK(tn, f)〉n), n = 1, ..., N}, (4)

corresponding to the same time instants where the multitaper

spectrograms are being computed. We take the variance of the

distance vector in (4) as a measure of the spectral fluctuations

related to the signal itself:

Θ1 = var(c(x)n )n=1,...,N ,

where Θ1 is the test statistic for the one-sided test:

d(x) =

{
1 if Θ1 > γ, ”nonstationary”,

0 if Θ1 < γ, ”stationary”.
(5)

The threshold γ above which the null hypothesis of sta-

tionarity is rejected is obtained from (3), the collection of dis-

tances regarding the surrogate set. To compute γ, first we

take the variance of each distance vector {c(sj)n , j = 1, ..., J},

which leads to a vector of J variances shown in (6).

{Θ0(j) = var(c(sj)n )n=1,...,N , j = 1, ..., J}. (6)

After computing (6), it is necessary to obtain its statistical

distribution. In [2] it is proposed to model the distribution of

Θ0(j) by a gamma pdf, having its two parameters estimated

in a maximum likelihood sense. It is reasonable, since ”the
test statistic sums up squared, possibly dependent quantities
which themselves result from a strong mixing likely to act as
a Gaussianizer”. Assuming the gamma model to hold, we

derived a threshold γ = 0.95 above which the null hypothesis

of stationarity is rejected.

3. DISTANCES

The dissimilarity measure between local and global spectra is

a key point of the method. Distances can be separated in two

broader classes: distances of probability or frequency nature.

Probability-based distances quantify the dissimilarity be-

tween two statistical objects, e.g., probability distributions.

Alternatively, frequency-based distances are computed di-

rectly from the spectra, by comparing them in both shape and

level [1].

Originally, it was proposed in [2] to mix both natures,

forming a combined distance in order to take advantage

from the different classes. Such dissimilarity measure is

shown in (7), where DLS(G,H) and DKL(G̃, H̃) denote

the well-known log-spectral deviation and Kullback-Leibler

divergence, respectively. The terms H and G are two positive

spectra while H̃ and G̃ denote their normalized (to unity)

versions.

DCB(G,H) = DKL(G̃, H̃)(1 +DLS(G,H)) (7)

Unfortunately, the distance of (7) did not present a good

performance with respect to first-order nonstationarities, even

after the weighting procedure that will be introduced in Sec-

tion 5. Hence, we propose to use a different dissimilarity

measure called Itakura-Saito distortion, given by (8). It is

a frequency-based distance which was chosen after an inves-

tigative study. Theoretically, we should expect better results

using this measure, since it computes the matching error be-

tween an original spectrum G(f) (the local spectrogram, for

example), and its approximation H(f) (the global spectrum,

as being considered here) [3].

DIS(G,H) =

∫
Ω

[
G(f)

H(f)
− log

G(f)

H(f)
− 1

]
df (8)
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4. APPLYING THE STATIONARITY TEST

After introducing the stationarity test, we apply it to some

synthetic signals. These are Gaussian sequences with a vary-

ing mean, variance, and both, occurring in different positions

over time. The testing signals, which have their mean compo-

nent subtracted, are shown in Fig. 1, where the three adopted

nonstationarity models are presented. In Fig. 1(a),(d),(g) and

Fig. 1(b),(e),(h) we have, respectively, nonstationarities start-

ing at the beginning and at the middle. In Fig. 1(c),(f),(i) we

have nonstationarities starting and ending at certain positions,

forming a sort of a piecewise of stationarity. Finally, we chose

a short length (N = 139), in order to be in accordance with

several areas of application like biomedicine, climatology and

hydrology. Also, testing short signals allows to evaluate the

test under unfavorable situations.
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Fig. 1. Testing signals with a varying mean ((a),(b),(c)), vari-

ance ((d),(e),(f)) and both ((g),(h),(i)). From the first to the

third column the adopted nonstationarity models are shown.

The stationarity test was applied sequentially (2500 times)

in the signals presented in Fig. 1 and also in a stationary se-

quence of the same length (N = 139), drawn from a Gaussian

distribution N (0, 1). The percentage of rights results (%) are

shown in Table 1, where (μ), (σ) and (μ, σ) stand for non-

stationarity in the mean, variance, and both, respectively. As

it can be seen, the best performance is achieved by using the

Itakura-Saito distance. The results were not constantly right

for the combined distance. The changing outcomes are due to

the randomness of the surrogate set, which allows fluctuations

of the stationarity threshold if the test is being applied sequen-

tially. Most important, none of the cases accused the signals

having just first-order evolutions. In the following section we

introduce a method to improve this situation.

5. WEIGHTING DISTANCES

When computing Θ0, the vector of variances of the dis-

tances between local and global spectra, none consideration

Table 1. Percentage of right results (%) after applying the

test 2500 times to the signals of Fig. 1 and in a stationary se-

quence. The Itakura-Saito and combined distances were used

Starting at Starting at Nonstationarity

the beginning the middle bump

μ σ μ, σ μ σ μ, σ μ σ μ, σ

Itakura-Saito distance (% right results)

0 100 100 0 100 100 0 100 100

Combined distance (% right results)

0 100 100 0 0.16 100 0 99.4 94.4

Stationary sequence N (0, 1) (% right results)

100 (Itakura-Saito) and 100 (Combined)

was taken about the spectral content itself. For instance, we

would expect a signal with a varying mean having a spectrum

more concentrated at low frequencies than one with a vary-

ing variance1. Also, the spectral content should be spread

differently in time for both types of nonstationarities. As an

example, let us consider the two signals having an exclusively

varying mean and variance forming a piecewise of stationar-
ity (Fig. 1(c) and (f)). They are shown again in Fig. 2(a) and

(b), while their TF representations are shown in Fig. 2(c).
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Fig. 2. Signals showing piecewise stationarity: (a) in the

mean, (b) in the variance. (c) Their time-frequency repre-

sentation.

Notice that the sequence with varying mean does not

present a spectral content as significant at high frequencies

as the one with varying variance. Therefore, we propose to

use some more information from the signal and its spectrum

to modify the distances (and consequently Θ0), by building a

weight vector either in time of frequency, so as to give more

importance to those TF regions where the majority of signal

is located.

1As it is known that the statistics of time-varying spectrum are specific at

frequency near zero, this makes the method of [2] less applicable.
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5.1. Marginals

To collect the required information from the TF plane, we

might look at the influence of each frequency as the time runs

or the significance of each time instant in the spectral domain.

Actually, we are in fact recalling the marginal properties en-

joyed by the Wigner-Ville representation. Since there are two

sources from which we can extract an additional information,

we need to choose one of them to build the weight vector.

The distances are computed from local time-varying spec-

trum (evaluated by multitaper spectrograms) at some time in-

stants. So, while distances take as input functions of fre-

quency, their output will be a function of time. Hence, the

weight vector can be build in frequency or in time. If we sum

over time (leading to a vector of weights in frequency), and

multiply the spectra by the weight at the input of a given dis-

tance, we will be giving more importance to the most signif-

icant frequencies of the representation (globally). However,

the spectral content from the surrogate is randomly spread

over the TF plane, while properly equaling the global PSD of

the original signal. By weighting the surrogate spectra, this

random characteristic is affected. Moreover, the global PSD

stops resembling the one from the original signal.

Conversely, summing over frequency leads to a vector re-

presenting the global spectral contribution in time. This vec-

tor can be normalized to unity, and thus be used multiplica-

tively to weight the distance output. Doing so, we preserve
the random spectral localization and the equality with the
global PSD, which are the peculiarities from the surrogate
set. The scheme to choose the correct marginal and the ob-

tained weight vector are shown in Fig. 3.
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Fig. 3. Choosing the right marginal. (a) TF representation.

(b) Marginal in time. (c) Marginal in frequency. (d) The

global PSD from the surrogate is modified by spectral nor-

malization. (e) Distance normalized by the correct marginal.

By collecting a vector of normalized distances for each

surrogate and computing the variances, we obtain a new vec-

tor Θ′
0, carrying information from the chosen marginal, where

the gamma fit will be applied.

Considering these modifications, we applied the station-

arity test as previously. The results are shown in Table 2.

Table 2. Percentage of right results (%) after applying the

test 2500 times in the signals of Fig. 1 and in a stationary

sequence. The normalized distances were used

Starting at Starting at Nonstationarity

the beginning the middle bump

μ σ μ, σ μ σ μ, σ μ σ μ, σ

Itakura-Saito distance (% right results)

23.6 100 100 100 100 100 98.7 100 100

Combined distance (% right results)

0 100 100 40.3 99.7 100 95.6 100 100

Stationary sequence N (0, 1) (% right results)

99 (Itakura-Saito) and 5.6 (Combined)

Note that now we were able to detect a nonstationary

mean. On the other hand, we observe a trade-off in weighting

distances: although it allows the detection of first-order evo-

lutions that were not accused by the original method, the test

confidence related to the proper classification of a stationary

sequence was significantly affected when using combined

distance. In contrast, for the Itakura-Saito distance the test

performance was improved significantly. The normalization

allowed us to detect nonstationarities of both orders with just

1% of misclassification rate for the stationary sequence.

6. CONCLUSIONS

We observed that a recent stationarity test was not able to

properly detect first-order nonstationarities. Here, we pro-

posed two contributions that improve the test performance
and allow the detection of first-order nonstationarities. First,

we presented an adequate dissimilarity measure which in-

creases the classification accuracies. Second, we performed

a modification in the method in order to consider the spec-

tral content from the signal itself. The latter was done by

weighting the distances with the time marginal from the

time-frequency distribution.
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