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ABSTRACT

The ambiguity function and the Wigner distribution are fundamental
tools in the time-frequency analysis. In this paper, we present an
analog of the ambiguity function and the Wigner distribution for
signals on the sphere. First, we formulate the ambiguity function
for signals on the sphere which represents the signals in joint spatio-
spectral domain and derive an inversion operation to obtain the
signal from its ambiguity function. Next, we formulate the Wigner
distribution for azimuthally symmetric signals on the sphere as a
two dimensional spherical harmonics transform of the ambiguity
function. We provide the matrix formulation of the Wigner distribu-
tion and discuss some of its useful properties. Finally, we illustrate
the use of Wigner distribution for spatial and/or spectral localization
of a signal in joint spatio-spectral domain. The obtained results
provide the first step in designing more sophisticated transforms on
the sphere.

Keywords: unit sphere, spherical harmonics, Wigner distribution,
ambiguity function.

1. INTRODUCTION

The ambiguity function and the Wigner distribution are two fun-
damental tools in the time-frequency analysis, with applications in
many diverse fields including optics, music and radar [1–4]. The
relationship between the ambiguity function and the Wigner distri-
bution in (cf. (3)) was first derived in [5] and has been studied in de-
tail in [1]. Among the broader time-frequency analysis techniques,
it is well known that the Wigner distribution of multi-component
signals exhibits cross-terms, while the short time Fourier transform
(STFT) technique inherently involves smearing in both time and fre-
quency domains. However more sophisticated distributions based on
ambiguity function have been proposed which solve the cross-term
drawback [1]. Note that the wavelet transform is another popular
time-scale representation technique [1, 6]

A number of the time-frequency analysis techniques have been
extended for signals defined on the unit sphere to enable spatio-
spectral analysis techniques for various fields of science and engi-
neering [7–10]. The windowed spherical harmonics transform was
first proposed in [7] as an analog of the STFT, where the window-
ing is performed in the spatial domain. The windowed spherical
harmonics transform method is extended for localized spectral anal-
ysis to study the admittance and coherence between functions on
the sphere in [8]. Numerous spherical wavelet transform techniques
have also been developed and applied for signal analysis on the
sphere in geodesy [9]. A Wigner distribution on the sphere is defined
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in [10] in the context of optics, however, the authors use Sherman-
Volobuyev plane-wave basis functions to represent the spectral do-
main coefficients.

In this paper, we present an analog of the ambiguity function and
the Wigner distribution for signals on the sphere with spherical har-
monics as the basis functions. Since the rotations on the sphere are
defined using three Euler angles, we formulate the ambiguity func-
tion for a signal in joint spatio-spectral domain where the spatial
domain is SO(3) instead of unit sphere. We present the expression
of the ambiguity function for a signal in spectral domain and derive
an inversion operation to obtain the signal from its ambiguity func-
tion. Using the ambiguity function, we define the Wigner distribu-
tion for azimuthally symmetric signals. We also provide the matrix
formulation of the Wigner distribution and discuss some of its useful
properties. Finally, we provide illustrations of the use of the Wigner
distribution to study the spatially and/or spectrally localized signals
in spatio-spectral domain. The obtained results provide the first step
in designing more sophisticated transforms to deal with cross-terms
on the sphere.

The rest of the paper is organized as follows. The mathemati-
cal background is provided in Section 2. The ambiguity function on
the sphere is presented in Section 3 and the Wigner distribution for
azimuthally symmetric signals is formulated in Section 4. The sim-
ulation examples are provided in Section 5 and Section 6 concludes

the paper. Notations and terms: (·) denotes the complex conjugate
operation. Lowercase bold symbols correspond to vectors whereas
uppercase bold symbols denote matrices. δ denotes the Kronecker
delta function defined as δab = 1 if a = b and δab = 0 if a �= b.

2. MATHEMATICAL BACKGROUND

2.1. Ambiguity Function and Wigner Distribution

In time-frequency analysis, the ambiguity function A(t, ω) of a sig-
nal f(t) is given by [1, 3]

A(t, ω) =

∫
f(τ +

t

2
)f(τ − t

2
)e−jωτdτ (1)

and the Wigner distribution is given by [1, 2]

W (t, ω) =

∫
f(t+

τ

2
)f(t− τ

2
)e−jωτdτ (2)

The Wigner distribution W (t, w) in (2) can also be formulated as
two dimensional Fourier transform of the ambiguity function as [1,
2, 5]

W (t, w) =

∫
A(t′, ω′)e−jt′ωejtω

′
dt′dw′ (3)

We will use the above definition to formulate the Wigner distribution
for signals on the sphere in Section 4.
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2.2. Signals on the Unit Sphere

We consider a function f(θ, φ) defined on the unit sphere S2 � {r ∈
R

3 : ‖r‖ = 1}, i.e., if r ∈ S
2 then r is a unit vector, θ ∈ [0, π]

denotes the co-latitude and φ ∈ [0, 2π) denotes the longitude. The

inner product of two functions f and h on S
2 is defined as 〈f, h〉 �∫

S2
f(x̂)h(x̂)ds(x̂) where x̂ = (θ, φ) parameterize a point on the

unit sphere, ds(x̂) = sin θdθdφ and integration is carried out over

the whole unit sphere. All finite energy signals such that ‖f‖ �
〈f, f〉1/2 < ∞, form complex Hilbert space L2(S2).

The spherical harmonics Y m
� (x̂) = Y m

� (θ, φ) for degree � ≥ 0
and order |m| ≤ � are defined as [11]

Y m
� (θ, φ) =

√
2�+ 1

4π

(�−m)!

(�+m)!
Pm
� (cos θ)eimφ

(4)

and Pm
� are the associated Legendre polynomials [11]. Spherical

harmonics form an orthonormal set of basis functions on the sphere
and by completeness, any signal f ∈ L2(S2) can be expanded as

f(x̂) =
∞∑
�=0

�∑
m=−�

fm
� Y m

� (x̂) =
∞∑
�,m

fm
� Y m

� (x̂) (5)

where we have used the shorthand
∑∞

�=0

∑�
m=−� �

∑∞
�,m to

express two summations as one summation in succinct form and

fm
� � 〈f, Y m

� 〉 =
∫
S2

f(x̂)Y m
� (x̂) ds(x̂) are the spherical har-

monic Fourier coefficient of degree � and order m. In this work,
we only consider the real signals on the sphere. For an azimuthally
symmetric signal f(θ, φ) = f(θ), fm

� = 0 for m �= 0.

2.3. Rotation on the Sphere

A proper rotation of a signal on the sphere can be parameterized in
terms of the Euler angles, α ∈ [0, 2π), β ∈ [0, π], γ ∈ [0, 2π).
Define the rotation operator Dρ with ρ = (α, β, γ) which rotates a
signal first as a γ rotation about z−axis, followed by a β rotation
about y−axis, and then an α rotation about z−axis. The spherical
harmonics coefficient of the rotated signal [Dρf ](x̂) is given by [11]

{
Dρf

}m

�
=

〈
Dρf, Y

m
�

〉
=

�∑
m′=−�

Dm,m′
� (ρ)fm′

� (6)

where Dm,m′
� (ρ) = Dm,m′

� (α, β, γ) is the Wigner-D function [11].
Note that for an azimuthally symmetric signal, rotation of γ around
z-axis does not change the signal.

3. AMBIGUITY FUNCTION ON THE SPHERE

In this section, we present an analog of the the ambiguity function
in (1) for the signals on the sphere. The ambiguity function in (1)
can be thought as the Fourier transform of the product of the signal
and its translated version. On the sphere, the rotations correspond
to translations. Since, the rotation is parameterized using three Euler
angles, we define the ambiguity function on SO(3) instead of S2. The
domain of the ambiguity function is jointly spatial (parameterized by
ρ = (α, β, γ)) and spectral (parameterized by spherical harmonics
degree � and order m).

Definition 1. The ambiguity function A(ρ, �,m) of a signal f is
given by the spherical harmonics transform of the signal f , with

maximum spherical harmonics degree Lf , and its rotated version
Dρf as

A(ρ, �,m) �
∫
S2

f(x̂)[Dρf ](x̂)Y m
� (x̂)ds(x̂) (7)

for ρ = (α, β, γ) with α ∈ [0, 2π), β ∈ [0, π], γ ∈ [0, 2π) and
0 ≤ � ≤ LA, −� ≤ m ≤ � with LA = 2Lf .

Note that since the ambiguity function is bilinear in nature, i.e.,
it is the spherical harmonics transform of the product of the signal
and its rotated version, the maximum spherical harmonics degree LA

is 2Lf .

3.1. Spectral Domain Representation

Using (5) and (6), we can express the ambiguity function in (7) as

A(ρ, �,m) =

Lf∑
r,s

Lf∑
p,q

p∑
q′=−p

fs
r f

q′
p y(p, q, r, s, �,m)Dq,q′

p (ρ)

(8)

where y(p, q, r, s, �,m) =
∫
S2

Y q
p (x̂)Y

s
r (x̂)Y

m
� (x̂)ds(x̂) is the

spherical harmonics triple product and can be calculated using
Wigner 3-j symbols [11].

3.2. Signal Inversion

We can obtain the signal in spectral domain from its ambiguity func-
tion by averaging the signal over all possible rotations. We call this
operation the spherical harmonics marginal due to similarity in na-
ture with the frequency marginal of the time-frequency distribution.

Lemma 1. Given the ambiguity function A(ρ, �,m) of a signal f in
(7), we can obtain the spherical harmonic coefficient fm

� of a signal
up to a constant by averaging over SO(3) as

fm
� =

1√
4πf0

0

∫
SO(3)

A(ρ, �,m)dρ (9)

considering all the rotations ρ = (α, β, γ) and dρ = dα sinβdβdγ.

Proof. The integral of the wigner-D function over SO(3) is∫
SO(3)

Dq,q′
p (ρ) = δp0δp′0δq′0 (10)

Using (8), along with (10), and y(0, 0, r, s, �,m) = δr�δsm/
√
4π

which is obtained by using the orthonormal properties of spherical
harmonics, we obtain the stated result in (9).

Remark 1. We can exactly recover a signal from its ambiguity func-
tion, if the dc-component f0

0 of a signal is known.

4. WIGNER DISTRIBUTION ON THE SPHERE FOR
AZIMUTHALLY SYMMETRIC SIGNALS

In this section, we follow the analogy in (3) to define the Wigner
distribution on the sphere as the two dimensional spherical harmon-
ics transform of the ambiguity function in (7). Note that the domain
of ambiguity function in (7) is jointly spatio-spectral SO(3) × Z

2.
Since the Wigner-D function in the formulation of ambiguity func-
tion is three dimensional in spectral domain, the two dimensional
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Fig. 1. (a) f1(x̂), (b) f1 (spectrum of f1(x̂) ), (c) w1(x̂) as surface plot and (d) w1(x̂) as shaded plot.

transform operation which converts the spatial domain (ρ) to spec-
tral domain and the spatial domain to spectral domain projects the
signal to S

2 × Z
3.

In this work, we consider azimuthally symmetric signals on the
sphere such that the spatial domain of the ambiguity function is S

2

instead of SO(3). Using the relation Dq,0
p (φ, θ, 0) = KpY

q
p (θ, φ)

with Kp =
√

4π
2p+1

and judiciously choosing the rotations ρ =

(α, β, γ) = (φ, θ, 0) which characterize the spatial domain of
the ambiguity function on S

2, we obtain the ambiguity function
A(ρ, �,m) in (8) for azimuthally symmetric signals as

A(ρ, �,m) =

Lf∑
p,q

Lf∑
r=0

Kpf
0
pf

0
r y(p, q, r, 0, �,m)Y q

p (θ, φ) (11)

for 0 ≤ � ≤ LA where LA = 2Lf , ρ = (α, β, γ) = (φ, θ, 0) and
x̂ = (θ, φ). We only seek the contribution of zero-order spherical
harmonics in the spatio-spectral domain and define the Wigner dis-
tribution component as two dimensional spherical harmonics trans-
form of ambiguity function in (11).

Definition 2. The Wigner distribution component w(x̂, �) of an az-
imuthally symmetric signal with maximum spectral degree Lf using
the ambiguity function A(ρ, �, 0) of a signal in (11) is given as

w(x̂, �) =

LA∑
�′=0

∫
S2

A(ρ, �′, 0)Y 0
� (ẑ) ds(ẑ) (12)

for 0 ≤ � ≤ Lw, ρ = (φ′, θ′, 0), ẑ = (θ, φ), LA = 2Lf and
Lw = Lf .

Remark 2. The Wigner distribution component w(x̂, �) represents
the contribution of the zero order spherical harmonic of degree �.
Thus it reveals the spatially varying contribution of Y 0

� , which may
not be visible if we see the signal only in spectral domain.

4.1. Spectral Domain Representation and Matrix Formulation

The Wigner distribution component w(x̂, �) can be expressed in
terms of the signal f using (11) as

w(x̂, �) = K�f
0
�

Lf∑
r=0

f0
r

2Lf∑
�′=0

y(�, 0, r, 0, �′, 0)Y 0
�′(x̂) (13)

We define the complete spatio-spectral Wigner distribution w(x̂) as
an indexed vector of w(x̂, �) for 0 ≤ � ≤ Lf as

w(x̂) � [w(x̂, 0), w(x̂, 1), . . . , w(x̂, Lf )], (14)

which can be expressed in matrix form as

w(x̂) = f Υ(x̂)F (15)

where f = [f0
0 , f

0
1 , . . . , f

0
Lf

], F is a diagonal matrix of size

(Lf + 1) × (Lf + 1) with diagonal entries F�� = K�f
0
� and

Υ(x̂) is a matrix of size (Lf + 1) × (Lf + 1) with entries

Υr�(x̂) =
∑2Lf

�′=0 y(�, 0, r, 0, �
′, 0)Y 0

�′(x̂). Using the matrix for-
mulation in (15), the Wigner distribution of a signal in the desired
spatio-spectral domain can be determined. It should be noted that
the entries of the matrix Υ(x̂) are independent of the signal.

4.2. Properties of the Wigner Distribution on the Sphere

In time-frequency analysis, the Wigner distribution of a signal has
some useful properties, e.g., it satisfies the time and frequency
marginals and it has the finite supports in joint time-frequency do-
main. The Wigner distribution on the sphere exhibits similar but
not the same properties. The expression in (13) reveals that the
Wigner distribution follows the finite support property in the spec-
tral domain, i.e., , w(x̂, �) = 0 only when f0

� = 0. The spherical
harmonics marginal of the Wigner distribution in (12) is obtained by
integrating over the spatial domain as∫

S2

w(x̂, �) ds(x̂) = K�|f0
l |2 (16)

which indicates that the the Wigner distribution satisfies spherical
harmonics marginal property. Note that the spherical harmonics
marginal, as obtained in (16), is mathematically equivalent to the
convolution of an azimuthally symmetric signal with itself in the
spectral domain.

Similar to the time-frequency Wigner distribution, the Wigner
distribution on the sphere is not linear : if we have two signals f1
and f2 with respective Wigner distributions w1(x̂) and w2(x̂), the
Wigner distribution w(x̂) of a signal f = f1 + f2 can be obtained
using the matrix formulation as

w(x̂) = w1(x̂) +w2(x̂) + f1 Υ(x̂)F2 + f2 Υ(x̂)F1 (17)

where F1 and F2 are diagonal matrix with elements of f1 and f2 as
diagonal entries. The last two terms in (17) are the analog of cross-
terms which also appear in the time-frequency Wigner distribution.

5. EXAMPLES

In this section, we provide examples of the Wigner distribution of
spectrally localized and the spatio-spectral localized signals. We
consider two azimuthally symmetric, unit energy normalized, and
bandlimited signals with maximum spherical harmonics degree
Lf = 60. We define a spectrally localized signal f1(x̂) which con-
sists of equal contribution of spherical harmonics Y 0

18, Y 0
19, Y 0

20, Y 0
21

and Y 0
22 in the complete spatial domain as shown in Fig 1(a) and (b)

in spatial and spectral domains respectively. Also define a spatio-
spectral localized signal f2(x̂) which contains the contribution of
spherical harmonics Y 0

49, Y 0
50 and Y 0

51 spatially truncated in a region

3407



0.5 1 1.5 2 2.5 3

0.5

0

0.5

Co latitude θ

f 2(θ
)

(a)

0 20 40 60

0.2

0

0.2

0.4

Degree, l

f 2

(b) (c) (d)

Fig. 2. (a) f2(x̂), (b) f2 (spectrum of f2(x̂) ), (c) w2(x̂) as surface plot and (d) w2(x̂) as shaded plot.
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Fig. 3. (a) f3(x̂), (b) f3 (spectrum of f3(x̂) ), (c) w3(x̂) as surface plot and (d) w3(x̂) as shaded plot.

R = {θ, φ ∈ S
2 : π/8 ≤ θ ≤ 3π/8, 0 ≤ φ < 2π} as shown in

Fig 2(a) and (b) in spatial and spectral domains respectively. Due to
truncation in the spectral domain, the spectrum of f1(x̂) is no longer
bandlimited but we consider a maximum spectral degree Lf = 60,
which produces the spreading of a signal in the spatial domain out-
side the region R. The Wigner distributions w1(x̂) and w2(x̂)
which respectively correspond to the signals f1(x̂) and f2(x̂) are
shown in Fig. 1(c),(d) and Fig. 2(c),(d) as a function of colatitude θ,
which reflects the spatial and spectral localization of signals in the
spatial and spectral domain.

Finally, we illustrate the use of the Wigner distribution in re-
vealing the information about the localization of signal in different
spatio-spectral regions. Consider a signal f3(x̂) = f1(x̂) + f2(x̂)
whose spatial and spectral domains are shown in Fig. 3(a) and (b)
and the Wigner distribution w3(x̂) is shown in Fig. 3(c),(d). The
information about the spatio-spectral localization of the signal com-
ponent f2(x̂) in f3(x̂) is not available in either spatial or spectral
domain, but it is reflected in the joint spatio-spectral domain. We
also observe that the Wigner distribution w2(x̂) is not the sum of
w1(x̂) and w2(x̂) and there exist some artifacts due to the appear-
ance of cross-terms (see (17)).

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an analog of the ambiguity function
and the Wigner distribution for signals on the sphere. The ambiguity
function represents the signals on the sphere in joint spatio-spectral
domain, where the spatial domain is SO(3) instead of S2 because the
rotations are defined on SO(3). We have proved the inversion op-
eration to obtain the signal from its ambiguity function. Using the
ambiguity function, the Wigner distribution, its matrix formulation
and properties has been presented for azimuthally symmetric signals.
Finally, we illustrated that the Wigner distribution reflects the spatial
and spectral localization of a signal in the spatio-spectral domain.
The obtained results provide the first step in designing more sophis-
ticated transforms on the sphere, e.g., the ambiguity function can be
used to formulate a general class of spatio-spectral distributions for
signals on the sphere similar to the Cohen class of time-frequency
distributions [1]. Furthermore, the comparison of the Wigner dis-

tribution with existing spatio-spectral techniques [7, 9] needs to be
explored.
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