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ABSTRACT 

The analysis of signals consisting of multiple components 
with non-linear frequency modulation is required in a large 
number of applications, including the study of marine 
mammals vocalizations. This analysis has multiple 
motivations, such as investigating the impact of 
anthropogenic noise on marine mammal behavior, and 
species identification to avoid collision between ships and 
marine mammals. Such applications are normally conducted 
in a Passive Acoustics Monitoring (PAM) context, where 
there is low SNR together with very little a priori knowledge 
on the signals being analyzed. Recently, time-frequency 
tracking based on local analysis of the instantaneous phase 
has been successfully applied to underwater signals. In this 
paper, we present a robust version of this method, based on 
the use of the multiple analysis windows. The results 
provided for simulated and real signals demonstrate 
improved tracking of the instantaneous frequency in noise. 

Index Terms - Time-Frequency Tracking, Instantaneous 
Frequency, Multi-window.  

1. INTRODUCTION 

 The significant increase in coastal human activities in 
recent years has resulted in a dramatic rise of underwater 
noise pollution and collisions between ships and marine 
mammals [1]. There is then a great issue at stake in being 
able to detect, classify, and localize marine mammal species 
through their acoustic behavior, i.e. their vocalizations. 
Dealing with large amounts of data and very little a priori 
knowledge of the observed signals, there is a tremendous 
need for the automated processing of marine mammal 
vocalizations. Since these signals are highly nonstationary, 
processing must center on estimation of the instantaneous 
frequencies of the signal components. Most of the current 
methods tackling this issue are spectrogram-based methods 
[2] suffering the classic limitations of time-frequency 
representations, especially when dealing with highly non-
stationary signals characterized by non-linear frequency 

modulation. Recently, a time-frequency tracking 
methodology has been developed [3], exploiting the 
coherence of the fundamental parameters of a signal, namely 
the instantaneous amplitude, frequency and phase. 
Specifically, the time-frequency components are analyzed by 
local phase analysis, using polynomial phase modeling. 
Continuity between signal components is preserved locally 
through maximization of the local correlation between the 
signal’s components defined by local polynomials.  
 In order to improve this technique with respect to noise 
robustness, we proposed a multi-window approach. This 
concept, introduced in [4] and revisited recently in the case 
of other time-frequency distributions [5], is adapted here to 
local polynomial modeling of the signal’s components. 
Local polynomial modeling is performed in two windows of 
different durations and this operation simultaneously ensures 
good noise robustness (thanks to the largest window) and 
accurate phase modeling (thanks to the shortest window).  
 The paper is structured as follows. In section 2 we 
review tracking by local phase analysis. In section 3, the 
multi-window approach is defined in the context of local 
phase analysis. Results for both simulated and real 
underwater data are discussed in the section 4. We conclude 
in section 5. 

2. TRACKING BY LOCAL PHASE ANALYSIS 

 Local phase analysis consists of second order local 
phase modelling, applied in local time windows that are 
half-overlapped. For each window, the 2nd order Warped 
HAF (High Order Ambiguity Function) is applied, providing 
2nd order phase modelling of one component [3]. The 
WHAF of order 2 is defined as the integral of the HAF, 

( ) [ ]= ττωω dHAFWHAF wkk ,   (1) 

computed for the warped set of lags 
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which comes from the dependence between the polynomial 
coefficient of order k, ak, and the frequency corresponding 
the maxima of HAF: 
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 Using the warped set of lags, the peaks of the HAFs will 
be located on a line defined by 

kk ak!=ω . Integrating the 

HAFs along this line will provide a more robust 
representation than an individual HAF.   
 In our example, naturally, WHAF estimation is applied 
to the most energetic component of the signal. The 
instantaneous frequency law (IFL) estimates obtained for 
two (overlapped) neighbour windows, i and i+1, are plotted 
in the figure 1. We note that the IFLs are close to the 
modelled component. Indeed, in real situations, this 
modelling is affected by noise and/or by nearby  
components. For this reason, we use WHAF to provide, for 
each window, several estimates of the same component (five 
in our simulations, which provide a satisfactory trade-off 
between tracking accuracy and computing time).  

Figure 1. 3rd order local phase modelling using WHAF is applied in 
overlapped windows 

  For each window, WHAF provides Nc estimates of the 
most energetic time-frequency component. Let us denote the 
set of phase functions obtained from WHAF-based phase 
modelling, applied in ith window, as:  
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where ( )
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iψ  is the kth phase function defined as: 
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where T is the window size. 
 The phase functions (or the IFLs) provided by the local 
polynomial phase analysis (4) are used to build local filter 
functions that extract the portion of the signal 
corresponding to the time-frequency regions defined in the 
neighbourhood of the local functions. This time-frequency 
filter is implemented as follows. The inverse function of the 
linear FM (frequency modulation) (5) is used to demodulate 
(warp) the portion of the signal corresponding to the time-
frequency region defined by this linear FM. Once the 

corresponding component has been demodulated, a band 
pass filter is applied. The extracted component is then 
transformed back to the original time-frequency region by 
applying the inverse transformation (unwarping) using the 
considered quadratic FM. This filtering operation is done for 
all linear FMs provided by the first step.  
 Let consider the analyzed signal x, and two analysis 
windows i and i+1. Using the phase functions estimated in 
these windows, we construct two sets of time-frequency 
filters ( ){ } ( ){ }

cc Nk
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we extract, from the analyzed signal x, the signal’s time-
frequency components denoted by:   
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 Using these extracted signal components, two phase 

functions ( )
m

iψ  and ( )1

n

iψ +
 are assigned to the same time-

frequency trajectory if the correlation of the corresponding 

components ( ){ } ( ){ }1 et ; , 1,...,i i
m ns s m n Nc+ =  is maximal 

for all pairs (m,n):  
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where « ° » symbolizes the fusion of two phase functions 
belonging to the same trajectory defined on the time interval 
(i-1)T:(i+1)T. Actually, correlating two signals with close 
time-frequency content and overlapped time support allows 
us to compare their phases without having to estimate them. 
After analyzing all segments of the signal, we define the 
time-frequency trajectory as the fusion of phase functions 
following (7).  

3. MULTI-WINDOW APPROACH 

The previously described approach estimates the local 
polynomial coefficients in a given window. However, it is 
impossible to know a priori if the polynomial model of 
order 2 is optimal with respect to the window size. We 
therefore adopt a multi-window analysis approach taking 
advantage of the properties of various window lengths. 
Naturally, a short window will provide more accurate 
(limited bias) local phase modeling , but the reduced number 
of samples results in a lack of robustness to additive noise 
(large variance). In contrast, a longer window will improve 
the robustness (small variance), but the polynomial model of 
order 2 might not be sufficient to fit rapid variations of the 
IFLs (large bias). Our contribution consists in the definition 
of an automatic procedure for the choice of the size of the 
analyzing window.  

Local second order phase modeling is equivalent to 
searching for the polynomial coefficients a1 and a2  

(respectively, the center frequency and the chirp rate) in a 
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given space, defined by the window size, T1 and the 
bandwidth [0,FS/2] – Fs is the sampling frequency. Figure 2 
illustrates the search space of (a1,a2).  

The multi-window approach starts with estimation in a 
long-duration window. This estimate, accordingly to Fig. 2, 
is expected to be a rough approximation of the true 
component to estimate. Based on the robustness of WHAF, 
we expect the estimation error to be moderate. 

Figure 2. Search space for the vector (a1,a2)  , the green shadow 
area is the search space for long-duration window  

With this in mind, we reduce the search space for the 
component to the neighborhood of this first estimate. The 
search space is then defined by: 
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where ( )21 ˆ,ˆ aa  are the estimated values given by the WHAF 

in the window of size Ti and fdown(t) and fup(t) respectively 
are defined by  

( ) ta
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where df  will be chosen as the spread of the WHAF of first 
order. Other choices could be based on the minimization of 
the root square mean error or the maximization of the 
concentration in the time-frequency domain [5]. The goal of 
this first estimate is that, by using a long window, we obtain 
a robust estimate of the center frequency in the interval 
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 Once this interval is determined, the next step consists of 
WHAF application in a shorter window, of size T2. The 
purpose of this new estimation stage is to improve the 
accuracy of chirp rate estimation. As indicated in the figure 
3, analysis in a shorter window is equivalent to the dilation 
of the search space along the a2 axis. The search space is 
then defined by:   
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Figure 3. Dilated Search space for the vector (a1,a2)    

This definition of the search space is very useful to 
eliminate incorrect estimates from the WHAF. As indicated 
in the previous section, the local analysis consists of short-
time polynomial modeling of order 2, provided by WHAF. 
The result of this step is described by (4) and (5) and 
consists of several local chirps. Because of noise and 
interference, these local chirps could constitute an inaccurate 
estimation of the true components. For this reason, the multi-
window approach defined in this section eliminates the 
WHAF estimated values that are outside the space defined 
by (8) and (10). In this way, we avoid these incorrect 
components, as we will see in the next section.   

4. RESULTS 

For the first example, we consider a synthetic sinusoidal 
frequency modulation (SFM) embedded in white Gaussian 
noise with SNR of -1.5 dB.  

Figure 4. Tracking of a synthetic sinusoidal frequency modulation 
using a single window of 128 points  

 Figure 4 shows the tracking result using local phase 
analysis and the fusion of local information defined by (7). 
As the figure shows, the tracking result has some errors due 
to the noise components. This is visible at the beginning 
where the errors of the chirp rate estimation result from, to 
first order, an inaccurate estimate of the center frequency. 
 The solution based on multi-window approach shows its 
potential in the next two figures. Figure 5 corresponds to 
tracking with a window of size 192 points. Compared with 
figure 4, we observe that the center frequencies (a1

coefficients) are better estimated in all windows. The 
estimated coefficients are used to generate the new search 
space (10) with a window size of 128 points. Figure 6 
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illustrates the tracking result obtained by the local analysis in 
the search space defined by (10). We remark that the 
tracking is accurate in both chirp rate and center frequency. 
This example illustrates the improvement provided by the 
multi-window approach with respect to the single-window 
approach described in section 2.  

Figure 5. Tracking based on local phase analysis in a window of 
192 samples 

Figure 6. Tracking based on local phase analysis with  2 windows 
algorithm (window1:  192 samples, window2 : 128 samples) 

 The next example concerns the tracking of a real marine 
mammal vocalization. Figure 7a indicates the tracking result 
for the single window approach using a 1024 point window. 
As indicated by the circles, the tracking fails to preserve the 
continuity of the time-frequency component.  

Figure 7. Tracking result in the case of a real  
marine mammal vocalization (a : single window time-frequency-
phase tracking, window length = 1024 samples, b : two windows 

time-frequency-phase tracking window 1 length = 1024, window 2 
length = 128 

 The multi-window approach solves this problem, as 
illustrated in figure 7b. Local polynomial phase modeling in 
the reduced search space gives a more accurate estimation of 
local components. The global tracking result is then better 
than the result from a single-window approach. 

5. CONCLUSIONS 

 In this paper we defined a multi-window tracking 
approach in the context of time-frequency tracking of 
complex signals characterized by non-linear frequency 
modulated components. The fundamental concept 
underlying the method is time-frequency-phase coherence, 
which is locally exploited by polynomial phase modelling of 
order 2. In order to improve the estimation accuracy and 
noise robustness, a multi-window approach is used. First, the 
local phase analysis is done in a long-duration window, and 
then a shorter window is used in order to improve the 
estimation of the chirp rate.  
 The results, provided for synthetic and real data, proved 
the efficacy of the proposed methodology. Although the 
improved performance is illustrated in an underwater 
application, the approach presented here is more general 
since it exploits fundamental aspects of many types of 
signals – namely, the continuity of the instantaneous phase. 
 In future work, we will concentrate both on theoretical 
and applicative aspects. Concerning theoretical work, the 
extension to higher order polynomial modelling will be 
investigated. Subsequent versions of this methodology will 
be studied in applications such as signal classification and 
localisation. 
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