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ABSTRACT

In this paper, a Sparse Representation based Classifica-
tion (SRC) approach is employed for mine hunting using
Synthetic Aperture Sonar (SAS) images. Given a training
database with enough samples, SRC exploits the properties
of sparse signals and expresses a sample of unknown class as
a sparse linear combination of the training samples. The class
of the training samples with greater weight is likely to be the
candidate sample class. The method was introduced for face
recognition, where the face images are directly taken as fea-
ture sets. Due to the greater variability of sonar images, for
mine hunting applications it is more convenient to transform
the image samples into a different feature domain. Several
feature sets are considered, and the results are compared with
those provided by a linear discriminant analysis classifier. We
have tested the method on an extensive SAS database with
more than 400 mines.

Index Terms— sparse representation, classification, mine
hunting, synthetic aperture sonar

1. INTRODUCTION

Compressive sampling has received a lot of attention in the
last years [1, 2]. Exploiting the properties of sparse repre-
sentation, it yields compression rates far above the Nyquist
threshold. In this paper, signal sparse representation is em-
ployed for a different purpose, namely, classification. Sparse
Representation based Classification (SRC) was introduced for
face recognition in [3]. Given a training database with enough
samples of known classes, SRC predicts the class of a candi-
date sample by expressing its feature set as a sparse linear
combination of the feature vectors of the training samples.
Subsequently, the distance between the candidate sample and
the reconstructed sample stemming from each single class is
calculated. The candidate sample is assigned to the class min-
imizing that distance.

In this paper, we employ the same principle for a different
application, mine hunting based on Synthetic Aperture Sonar
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(SAS) images. The Automatic Detection and Classification
(ADAC) of underwater objects for mine hunting is an active
field of research for several decades [4, 5, 6, 7]. Fig. 1 in-
cludes a collection of SAS snapshots with several cylindrical
and spherical mines. Note that the shadow of the objects are,
indeed, more prominent than their highlights. The ADAC sys-
tem employed in this paper consists of three stages: segmen-
tation, feature extraction and classification. First, the objects
present in the image are detected by means of a segmentation
algorithm. Not only the mines, but also physical features of
the terrain such as rocks and sand ripples, are segmented. A
set of significant features is extracted from each object, e.g.,
geometrical or statistical descriptors [8]. The final task of the
system is to assign one class to each object. The classes are
normally ‘mine’ and ‘no mine’. It is also possible to specify
different classes for different mine types, such as ‘spherical
mine’ and ‘cylindrical mine’. The feature vector of each de-
tected object is compared with those of a training database,
whose classes are known a priori. The object is classified
accordingly. Those mines assigned the ‘no mine’ class are
missed and those terrain features assigned the ‘mine’ class
constitute false alarms. The main goal of the system is the
minimization of the missed detection rate while keeping a rea-
sonably low false alarm rate.

All system stages (segmentation, feature extraction and
classification) influence the final performance. In this paper
we focus on the latter, and we propose classification via sparse
representation as a novel classification method for mine hunt-
ing applications. The system performance is compared with
that of Linear Discriminant Analysis (LDA) classifier. Differ-
ent sets of features are considered.

A 57,000 m? database of SAS images, with a resolution
of 2.5 cm x 2.5 cm per pixel, has been employed to test the
system. It includes more than 400 mines, both cylindrical and
spherical. We have employed a Markovian segmentation al-
gorithm [8] to segment the images. Three regions have been
considered: highlight, shadow and background (see Fig. 1 for
an illustration). More than 3000 ‘no mine’ objects are seg-

ICASSP 2012



02 04 06 08 1

02 04 06 08 1

02 04 06 08 1

02 04 06 08 1 02 04 06 08 1 02 04 06 08 1

02 04 06 08 1 02 04 06 08 1 02 04 06 08 1

0.2]
0.4f

0.6| h

0.8]
1
1.2]

02 04 06 08 1

Range (m)

02 04 06 08 1

Range (m)

02 04 06 08 1

Range (m)

Fig. 1. The first row shows three snapshots of spherical mines.
The second row illustrates their segmentation into three re-
gions: highlight (green), shadow (red) and background (blue).
the third row depicts three cylindrical mines and the forth row
the corresponding segmentation results.

mented together with the man made objects of interest.

This paper is organized as follows. Sec. 2 is devoted to
SRC theory. The adaptation of the method to mine hunting
is tackled in Sec. 2.1. Results are presented in Sec. 3 and the
paper concludes with Sec. 4.

2. SPARSE REPRESENTATION BASED
CLASSIFICATION

In SRC, we arrange the feature vectors of the training samples
of class k in a matrix Ay, = [ap1,a52,...,35N,] € RM x
RNk, where ag, € RM denotes the feature vector of the nth
sample of the kth class, Ny, is the number of samples of class
k., ke {l,..., K}, and K is the number of classes.

SRC was originally proposed for face recognition [3]. For
such application, each class k corresponds to a different per-
son. The database in [3] employs ‘passport pictures’, where
the persons are always shown from the front and the poses
are uniform. Therefore, it is not necessary to transform the
samples into any feature space to improve the image charac-
terization, and each feature vector ay, ,, corresponds directly
to the vectorized version of the image normalized in size.

Given sufficient training samples, any test sample y of
class k can be expressed by a linear combination of the train-

ing samples of that class:

Ny
Y= apnten or y=Aghg, (1)
n=1
where the vector Ay = [Ag1,..., A\, )T contains the

weighting coefficients.

The membership of y to the kth class is however unknown
and needs to be predicted. For this purpose, we define a new
matrix A of size M x N, N = N1+ No+. ..+ Ny, containing
the training samples of all K classes, A = [A1, Ao, ..., Ak].
Again, we can express the test sample in terms of a linear
representation:

y = 4s, )

where s = [0,...,0, g1, ANy, 0,...,0/7 € RN isa
coefficient vector whose entries are zero except those associ-
ated with the kth class.

From compressive sampling theory [1, 2], we know that
we can find a solution s to the linear Eq. (2), if s is sparse
enough, by minimizing the /1-norm of all possible solutions:

§ = argmin||s||y s.t. As=y. 3)

Ideally, the non-zero entries of § will all be associated with
the columns of A containing the training samples of its class
k. However, due to noise and modelling errors, the estimate
§ may have non-zero coefficients that are associated to other
classes. Nevertheless, their magnitude should be small in re-
lation to those of class k. Taking this into account, the fol-
lowing procedure is established in order to predict the class k
of a certain test sample y. We define a characteristic function
Sx: RN — RN of the kth class, where &;(8) sets all coeffi-
cients of §, which do not belong to the kth class, to zero. The
residuals can now be calculated as

ri = ||y — Adk(8)]]2, 4

which is the ¢5-distance between the test sample y and a
reconstructed sample generated by a linear combination of
training samples only of the kth class. We assign class &
to the test sample y if r; is the minimum residual, Vk €
{1,...,N}.

Note that the images ay, ,, in A need to be normalized to
have unit /5-norm. This can be seen as an equalization of the
image energy. Illustratively, consider a set of dark images and
one bright image as the training data. If we want to classify
a bright test sample, the bright training sample will dominate
regardless of which class it belongs to, unless the energy nor-
malization has been applied beforehand.

2.1. Application to Mine Hunting

As referred above, [3] employs face images directly as fea-
ture vectors ay ,,. This is possible due to the nature of the
images, which are uniform in size and pose, presenting only
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Feature Set Name
SAS Image Image”S
Segmented Image ImageSee
Fourier Coefficients FC
Principal Components PC
Normalized Central Moments NCM

Optimal feature set for LDA classifier  f{’h,

Table 1. Feature sets

small variations within on class. We try to mimic these ‘pass-
port photo’ conditions for mine hunting by centering the sonar
images of the mines around the center of mass and normaliz-
ing their size. It remains, however, a high variability in the
appearance of underwater mines within a single class. By
contrast with the passport photos, the shape of an underwater
mine and its shadow are dependent on many factors such as
the orientation and the direction of illumination by the sonar
system. Moreover, SAS images are of noisy nature. For an il-
lustration, observe the snapshots in Fig. 1. While the first two
spheres are similar, the third one is significantly different. The
same can be seen for the cylinders. This strong variation of
sonar images degrades the performance when they are used
directly as feature vectors.

In order to improve the classification results, a collection
of alternative feature domains have been tested. First, the seg-
mentation result has been considered. While the background
pixels are assigned the value 0, the highlight and shadow pix-
els are assigned the values 1 and -1, respectively. The 2D-
Fourier Coefficients (FC) of the binary representation of the
segmented shadow are considered as features. In total 49 co-
efficients are extracted (order seven in both range and cross-
range direction). The first 50 Principal Components (PC) [9],
extracted as well from the binary representation of the seg-
mented shadow, have been considered. Moreover, we have
tested the set of Normalized Central Moments (NCM) [10]
up to order ten of the segmented shadow. Finally, a hetero-
geneous set of 72 features, hereafter referred to as fﬁg A» has
been tested. This feature set has been found by the Sequen-
tial Forward Floating Search feature selection algorithm for
the specific database considered in this paper and a Linear
Discriminant Analysis (LDA) classifier [11]. The feature set
consists of a subset of 2D-FC, PC and NCM combined with
invariant moments and a few geometrical and statistical fea-
tures specially designed to minimize their variability in poor
segmentation scenarios.

3. RESULTS

SRC has been tested on a database of 57,000 m2 SAS im-
ages, where 129 cylindrical mines and 308 spherical mines
are present. Furthermore, 3604 clutter objects constitute the
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Fig. 2. SRC vs. LDA classification results

‘no mine’ class. To avoid the predominance of the clutter
class, only a subset of 400 clutter elements has been included
in the training set (although allof them are employed to test
the system).

Due to the limited number of samples, all classification
results are obtained using the leave-one-out technique [12].
The ¢1-minimization implementation is based on the SpaRSA
algorithm proposed in [13].

SRC has been tested for the different feature sets de-
scribed in Sec. 2.1. They are listed in Table 1. Results are
illustrated in Fig. 2. As a reference, the ROC curve of the
LDA classifier for its optimal feature set is depicted as well.
Using the sonar image Image®*S directly as feature set pro-
duces a false alarm rate of almost 0.5 for a detection rate of
0.8. These results are well below the performance of the LDA
algorithm. If the segmentation result, ImageSAS, is utilized,
the detection rate slightly increases and the false alarm rate
decreases to 0.1. FC and NCM yield similar classification
results, all of them still not comparable to the LDA perfor-
mance. Only when SRC employs the fh, feature set, its
classification results are as good as those provided by LDA.
For a 0.04 false alarm rate (0.0025 false alarms per m?),
almost 95 % of the mines are detected.

The computational cost of SRC has been considered. For
the fprtA feature set, above 1 s is required to classify each
sample with an Intel i5 4 core 2.8 GHz processor. This high
computational cost is due to the ¢;-norm calculation. By con-
trast, the cost of classifying one sample by the LDA classifier
is about 1000 times lower.

4. CONCLUSION

Sparse representation based classification has been employed
for mine hunting using synthetic aperture sonar images. By
contrast with face recognition application, it is advantageous
to express the sonar images in a suitable feature space. This
is due to the higher variability of sonar imagery. Six differ-



ent feature domains have been tested on a database of more
than 400 mines. The best results have been obtained when a
heterogeneous feature set, consisting of a combination of ge-
ometrical and statistical features of the segmented object, is
employed. Almost 95 % of the mines are detected for a false
alarm rate of 0.0025 per m?. This performance is as good as
that of the linear discriminant analysis classifier, which sug-
gests that SRC is a powerful tool for mine hunting applica-
tions when a suitable feature domain is employed. Its com-
putational cost is, however, significantly higher that the LDA
cost.
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