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ABSTRACT

Non-negative Matrix Factorization (NMF) has become a powerful
tool for image representation due to its enhanced semantic inter-
pretability under non-negativity. Unfortunately, two types of neigh-
borhood information essential to representation are lost in NMF. For
individual image, the local structure information is missing in the
vectorization, which can then be avoided by Non-negative Tensor
Factorization (NTF). For image data points, they often reside on a
low dimensional submanifold embedded in a high dimensional am-
bient space. NMF and NTF are incapable of encoding the local
geometrical information, which can nevertheless be resuscitated by
manifold learning. To simultaneously model both of the neighbor-
hood relationship within and among image data, this paper propos-
es a novel algorithm called Neighborhood Preserving Non-negative
Tensor Factorization (NPNTF) by incorporating locally linear em-
bedding regularization into tensor factorization. Experimental re-
sults on image clustering show the superior performance of NPNTF
with more natural and discriminating representation ability.

Index Terms— Non-negative matrix and tensor factorization,
locally linear embedding, manifold regularization, image represen-
tation, image clustering

1. INTRODUCTION

Low-rank approximation (LRA), which tries to find a parsimonious
representation, has gained substantial attention in image processing
and computer vision areas recent years. Many tasks, such as cluster-
ing and classification, can be effectively tackled in the reduced low
dimensional subspace. The formulation of LRA can be regarded as
decomposing the original data matrix into two or three low-rank fac-
tor matrices. By imposing the non-negativity constraint, a new LRA
paradigm called Non-negative Matrix Factorization (NMF) is initi-
ated with physiological and psychological evidence [1]. Due to the
purely additive combination, NMF obtains the parts-based represen-
tation and thus enhances the interpretability of the issue.

However, two types of neighborhood information essential to
image representation are lost in the basic NMF model. The data to
be processed in NMF are treated as vectors in essence, whereas an
image is intrinsically a 2-D matrix. Thus the vectorization of image
data will unavoidably lose the spatial coherency and local structure
information which might be crucial to following processing. The
neighborhood information within individual image can be preserved
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naturally by regarding the image data set as a 3-D cube and extend-
ing matrix into tensor factorization, i.e. Non-negative Tensor Factor-
ization (NTF). NTF is also capable of learning parts-based represen-
tation with superior decomposition performance to what NMF can
provide with respect to degree of sparsity and lack of ghost residue
[2, 3]. Besides, some additional constraints can be incorporated into
NTF similarly, such as sparse NTF [4] and discriminant NTF [5].

On the other hand, some recent research work suggests that im-
age space is actually a smooth low dimensional submanifold em-
bedded in a high dimensional ambient space [6]. Several manifold
learning methods, such as ISOMAP [7], LLE [8], and Laplacian
Eigenmaps [9], have been proposed to explicitly explore the intrin-
sic topological structure. Unfortunately, NMF and NTF still fit the
data in Euclidean space. By combining NMF with appropriate man-
ifold learning approaches, the neighborhood relationship among im-
age data can be unearthed. This is the major motivation in Graph
Regularized NMF [10], Neighborhood Preserving NMF [11], and
NMF on Multiple Manifolds [12].

In order to simultaneously address the above two neighborhood
information loss: neighborhood structure within individual image
and neighborhood geometry among image data, we propose a nov-
el algorithm called Neighborhood Preserving Non-negative Tensor
Factorization (NPNTF) in this paper by incorporating tensor factor-
ization and manifold learning. Laplacian Regularized Non-negative
Tensor Factorization (LRNTF) [13] encodes the latter neighborhood
information pairwise, i.e. the two points in the mapped low dimen-
sional space should be close enough to each other if they are neigh-
bors in the original image space. Here, we turn to model the underly-
ing geometrical structure patchwise and adopt the locally linear em-
bedding assumption [8]. Since each data point and its neighboring
points lie on or close to a locally flat patch of the manifold, the lo-
cal geometry of these patches are characterized by linear coefficients
that reconstruct each data point from its neighbors. Hence the coef-
ficients are the local invariants in the factorization mapping. This
is achieved by adding corresponding manifold regularization term
in the NTF objective function, upon which an iterative multiplica-
tive updating algorithm with guaranteed convergence is developed
to solve the NPNTF optimization problem. A new parts-based im-
age representation is thus learned which identifies the neighborhood
information and leads to a more semantic feature space.

The rest of this paper is organized as follows. In Section 2 NMF
and NTF are reviewed briefly. The proposed NPNTF algorithm is e-
laborated in Section 3. Section 4 presents the experimental results on
image clustering. Discussions and conclusions are drawn in Section
5.
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2. BRIEF REVIEW OF NON-NEGATIVE MATRIX AND
TENSOR FACTORIZAITON

Given an M -D random vector x with non-negative elements, whose
N observations are denoted as xi,i=1,2,...,N , let data matrix be X=
[x1,x2, . . . ,xN ] ∈ R

M×N
≥0 , NMF seeks non-negative basis matrix

U∈ R
M×L
≥0 and coefficient matrix V ∈ R

L×N
≥0 , such that X ≈ UV .

Using the bilinear model, NMF can be rewritten as linear combina-
tion of rank-one non-negative matrices expressed by

X ≈
L∑

m=1

U•mV m• =

L∑
m=1

U•m ⊗ (V m•)
T

(1)

where U•m is the m-th column vector of U while V m• is the m-th
row vector of V , and ⊗ denotes the outer product of two vectors.
Regarding the general initial condition L << min(M,N), NMF
tries to represent the high dimensional stochastic pattern compactly.

When it comes to multiway data, a natural extension is ten-
sor factorization. There are generally two types of NTF model—
Non-negative Tucker Decomposition (NTD) [14] and more restrict-
ed Non-negative Parallel Factor Analysis (NPARAFAC) [2], whose
main difference lies in the decomposed core factor tensor. Here we
mainly focus on NPARAFAC model, which decomposes an N -order
tensor in a sum of rank-one non-negative tensors.

For image space, let 3-order tensor X ∈ R
R×S×N
≥0 with

entries Xr,s,n,r=1,...,R,s=1,...,S,n=1,...,N denote a set of N im-
ages Mi of dimension R × S, NTF seeks three factor matrices
U = [u1,u2, . . . ,uL] ∈ R

R×L
≥0 , V = [v1,v2, . . . ,vL] ∈ R

S×L
≥0 ,

and H = [h1,h2, . . . ,hL] ∈ R
N×L
≥0 , such that X can be ap-

proximated as a sum of L rank-one non-negative tensors X ≈
L∑

m=1

um ⊗ vm ⊗ hm, i.e. Xr,s,n ≈
L∑

m=1

um
r vm

s hm
n . Here, the

rank-one matrix um ⊗ vm, m = 1, ..., L spans the basis image

space, and each image Mi, i.e. the frontal slice Xi
Δ
= X••i, is

represented as a superposition of these basis images with weight
coefficient Hi• = [h1

i , . . . ,h
L
i ]. Thus the original 2-D image ma-

trices are mapped into new feature space as 1-D coefficient vectors.
In order to quantify the difference between the original data and

the approximation, the square Frobenius norm (i.e. Square of Eu-
clidian Distance)‖•‖2F is employed as the objective function:

ONTF =
1

2

∥∥∥∥∥X −
L∑

m=1

um ⊗ vm ⊗ hm

∥∥∥∥∥
2

F

(2)

3. NEIGHBORHOOD PRESERVING NON-NEGATIVE
TENSOR FACTORIZATION

By using tensor factorization, the neighborhood information within
individual image is preserved, and the parts-based representation is
learned by NTF in Euclidean space. However, the image data are
often sampled from a nonlinear low dimensional submanifold em-
bedded in a high dimensional ambient space. Thus Neighborhood P-
reserving Non-negative Tensor Factorization (NPNTF) is introduced
to identify and maintain the intrinsic geometrical structure or neigh-
borhood relationship among image data by explicitly incorporating
additional manifold regularization term.

3.1. Locally linear embedding assumption

A natural and intuitive local topology in modeling the manifold
structure adopted by locally linear embedding (LLE) assumes that a

data point generated as a linear combination of several nearby points
on a specific manifold in the original space should be reconstructed
from its neighbors in a similar way or by the same combination co-
efficients in the reduced low dimensional subspace. LLE is capable
of recovering global nonlinear structure from locally linear fits [8].

For each image data point Xi, let Nk(Xi) be its k-nearest
neighborhood. The local topology around Xi is characterized by
linear coefficients Si• that best reconstruct Xi from its neighbors.
The reconstruction coefficients can be obtained by solving the fol-
lowing constrained least-squares problem:

min
∥∥∥Xi −

∑
j
SijXj

∥∥∥2
F
, i = 1, ..., N

s.t.
∑

j
Sij = 1 & Sij = 0, for Xj /∈ Nk(Xi)

(3)

where S ∈ R
N×N is the weight coefficient matrix.

In the mapped low dimensional subspace, the new feature vec-
tor Hi• is supposed to satisfy the similar reconstruction mode with
fixed S, which can be achieved by minimizing

R =
∑

i
‖Hi• − Si•H‖2 = ‖H − SH‖2F = ‖(I − S)H‖2F

= Tr
{
HT (I − S)T (I − S)H

}
= Tr

(
HTGH

)
(4)

where Tr(•) denotes the trace of a matrix, I ∈ R
N×N is the iden-

tity matrix, and G = (I − S)T (I − S) is symmetric. Hence the
neighborhood relationship among data points is encoded in R.

3.2. NTF with manifold regularization

When incorporating R as the manifold regularization term into the
original NTF objective function in (2), Neighborhood Preserving
Non-negative Tensor Factorization (NPNTF) is obtained which min-
imizes the following objective function

ONPNTF =
1

2

∥∥∥∥∥X−
L∑

m=1

um ⊗ vm ⊗ hm

∥∥∥∥∥
2

F

+
1

2
ηTr

(
HTGH

)
(5)

where η is the regularization parameter balancing the trade-off be-
tween the fitting goodness and the manifold constraint.

Both of the aforementioned neighborhood information is thus in-
volved in (5). To avoid the scaling ambiguity, additional L2 normal-
ization on columns of U and V (i.e. ‖um‖2 = ‖vm‖2 = 1, m =
1, . . . , L) is introduced apart from the non-negativity constraints.

3.3. Update rules

While ONPNTF is not jointly convex in U , V , and H , it is sep-
arately convex in U , V , or H . Alternating multiplicative update
rules similar to NMF and NTF are derived here for NPNTF, which
can be viewed as adaptive rescaled gradient descent approach with
non-negativity preservation. Here, we mainly focus on the update
rules for the entries in H .

Let 〈A,B〉 denote the inner product of two tensors of the same
order. Since the differential with respect to inner product satisfies
d 〈A,A〉 = 2 〈A, dA〉, it follows that

d(ONPNTF ) =
1

2
d

〈
X −

L∑
m=1

um ⊗ vm ⊗ hm,

X −
L∑

m=1

um ⊗ vm ⊗ hm

〉
+

1

2
ηd
{
Tr
(
HTGH

)}
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=

〈
X−

L∑
m=1

um ⊗ vm ⊗ hm, d

(
X−

L∑
m=1

um ⊗ vm ⊗ hm

)〉

+
1

2
ηd

{
L∑

m=1

(hm)TGhm

}

(6)

Noting that G is symmetric, the differential with respect to hj

is

d(ONPNTF (h
j)) =

〈
L∑

m=1

um ⊗ vm ⊗ hm,uj ⊗ vj ⊗ d(hj)

〉

−
〈
X,uj ⊗ vj ⊗ d(hj)

〉
+ ηGhjd(hj) (7)

Taking the differential with respect to the i-th element of hj , it
becomes

d(ONPNTF (h
j
i )) =

〈
L∑

m=1

um ⊗ vm ⊗ hm,uj ⊗ vj ⊗ ei

〉

−
〈
X,uj ⊗ vj ⊗ ei

〉
+ ηGhjei (8)

where ei is the i-th column of the N ×N identity matrix. Let G =
G+ −G−, G+

in = (|Gin|+Gin) /2, G−
in = (|Gin| −Gin) /2.

Using the identity 〈x1 ⊗ y1,x2 ⊗ y2〉 = 〈x1,x2〉 〈y1,y2〉, the

partial derivative with respect to hj
i is as

∂ONPNTF

∂hj
i

=

L∑
m=1

hm
i

〈
um,uj

〉〈
vm,vj

〉
−
∑
r,s

Xr,s,iu
j
rv

j
s

+η
N∑

n=1

G+
inh

j
n − η

N∑
n=1

G−
inh

j
n

=

{
L∑

m=1

hm
i

〈
um,uj

〉〈
vm,vj

〉
+ η

N∑
n=1

G+
inh

j
n

}

−
{∑

r,s

Xr,s,iu
j
rv

j
s+η

N∑
n=1

G−
inh

j
n

}

Δ
= ∇+ −∇− (9)

where∇+ =
L∑

m=1

hm
i

〈
um,uj

〉 〈
vm,vj

〉
+ η

N∑
n=1

G+
inh

j
n,∇− =

∑
r,s

Xr,s,iu
j
rv

j
s+η

N∑
n=1

G−
inh

j
n.

Hence the multiplicative update rule for hj
i with non-negativity

preservation can be obtained as follows:

hj
i ← hj

i

∇−
∇+

=

hj
i

{∑
r,s

Xr,s,iu
j
rv

j
s + η

N∑
n=1

G−
inh

j
n

}

L∑
m=1

hm
i 〈um,uj〉 〈vm,vj〉+ η

N∑
n=1

G+
inh

j
n

(10)
This is equivalent to setting the learning rate μ(hj

i ) in the gradi-

ent descent formula hj
i ← hj

i − μ(hj
i )

∂ONPNTF

∂h
j
i

as

μ(hj
i ) =

hj
i

∇+
=

hj
i

L∑
m=1

hm
i 〈um,uj〉 〈vm,vj〉+ η

N∑
n=1

G+
inh

j
n

(11)

Similarly, the update rules for uj
i and vj

i are as follows:

uj
i ←

uj
i

∑
s,n

Xi,s,nv
j
sh

j
n

L∑
m=1

um
i 〈vm,vj〉 〈hm,hj

〉 (12)

vj
i ←

vj
i

∑
r,n

Xr,i,nu
j
rh

j
n

L∑
m=1

vm
i 〈um,uj〉 〈hm,hj

〉 (13)

which are easier cases without manifold regularizer. Besides, the
convergence of the proposed algorithm can be proved by using the
Gauss-Seidel fashion similar to [2, 13].

4. EXPERIMENTAL RESULTS

The parts-based representation along with the identified neighbor-
hood information learned by NPNTF leads to a more semantic fea-
ture space. Image clustering can then be performed in this subspace.

4.1. Data sets and evaluation metrics

Two image data sets are used to evaluate the clustering performance
of the proposed NPNTF algorithm: the COIL20 image library and
the CMU PIE face database.

The COIL20 image library contains 72 gray scale images of size
32×32 for each of 20 objects taken from varying angles. The CMU
PIE face database contains 41,368 facial images of 68 persons under
different poses, illumination conditions, and expressions. Here we
select one near frontal pose (C27) subset, which contains 42 gray
scale images resized to 32× 32 for each person under different light
and illumination conditions.

To demonstrate the effectiveness of the proposed NPNTF algo-
rithm, we also make comparisons among the following popular clus-
tering algorithms:

(1) Canonical K-means clustering (K-means in short).

(2) Non-negative Matrix Factorization based clustering (NMF in
short). K-means clustering is implemented after NMF.

(3) Non-negative Tensor Factorization based clustering (NTF in
short). K-means clustering is implemented after NTF.

(4) Neighborhood Preserving Non-negative Tensor Factoriza-
tion based clustering (NPNTF in short). K-means clustering is im-
plemented after NPNTF.

Two metrics are used to measure the clustering performance: ac-
curacy and normalized mutual information (NMI), which are based
on comparing the obtained cluster label and the ground truth. For
the definition of these two metrics one may refer to [12].

4.2. Clustering results

For each data set, the evaluations are conducted with different cluster
numbers. For each given cluster number L, 10 test runs are conduct-
ed on different randomly selected clusters. The regularization pa-
rameter η is set by searching the grid {0.01, 0.1, 1, 10, 100, 1000}.
The neighborhood size k is set to 5. Table 1 and 2 show the clus-
tering results in term of accuracy and NMI on the COIL20 and PIE
data sets, respectively. The mean of the performance are reported in
the tables.
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Table 1. Clustering Accuracy (%) and NMI(%) on COIL20

L
Accuracy(%)

K-means NMF NTF NPNTF

2 90.6 91.2 87.1 91.4
3 85.5 83.5 86.8 94.5
4 73.6 74.4 78.4 90.7
5 66.9 68.8 69.5 87.3
6 69.3 69.8 71.1 87.5
7 63.2 65.7 65.4 83.5
8 59.9 63.3 63.2 80.6
9 62.6 64.1 64.5 77.6
10 60.4 63 65.5 78.1

Avg. 70.2 71.5 72.4 85.7

L
NMI(%)

K-means NMF NTF NPNTF

2 70.3 70.3 59.5 68.7
3 77.4 73.6 77.4 88.2
4 71.1 69.8 74.2 85.9
5 65.8 66.6 67.7 81.8
6 70.1 70.0 70.8 85.6
7 67.1 67.9 66.8 80.1
8 66.0 66.8 66.6 78.7
9 67.7 67.7 68.1 76.6
10 68.6 68.9 70.9 79.3

Avg. 69.3 69.1 69.1 80.5

Table 2. Clustering Accuracy(%) and NMI(%) on PIE

L
Accuracy(%)

K-means NMF NTF NPNTF

10 30.9 56.5 53.6 65.9
20 26.9 56.8 54.0 63.6
30 26.3 57.1 57.5 66.0
40 25.6 58.6 59.6 68.2
50 25.2 58.6 61.4 69.4
60 24.6 59.2 60.3 69.0

Avg. 26.6 57.8 57.7 67.0

L
NMI(%)

K-means NMF NTF NPNTF

10 37.1 66.7 55.5 64.3
20 43.5 74.4 68.3 77.1
30 48.5 78.0 77.1 85.2
40 51.1 80.1 81.6 89.1
50 52.4 81.3 83.0 89.8
60 53.4 82.6 83.1 89.5

Avg. 47.7 77.2 74.7 82.5

Table 1 and 2 demonstrate that our proposed NPNTF algorith-
m outperforms all other three methods on both the data sets, which
implies an enhanced semantic and discriminating representation ca-
pability by encoding the neighborhood information.

5. CONCLUSIONS

Based on the observation of two types of neighborhood information
loss, this paper has proposed a novel algorithm called Neighborhood
Preserving Non-negative Tensor Factorization (NPNTF) for more ef-
fective image representation. By using tensor factorization formula,

NPNTF avoids local structure information loss within individual im-
age due to vectorization. Meanwhile, it encodes the local geometri-
cal information among image data by considering the linear recon-
struction coefficients with respect to each data point and its neigh-
bors patchwise. Although we handle them in different ways, both of
the neighborhood information can be in essence traced back to the
strong correlations between neighboring pixels in images. Experi-
mental results on standard image data sets show that NPNTF leads to
more powerful image representation and achieves superior clustering
performance. Moreover, this general framework is also applicable to
higher order tensor apart from image space discussed here. In the
future, non-negative tensor factorization on multiple manifolds will
be considered.
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