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ABSTRACT
A nonparametric approach combining generative models and func-
tional data analysis is presented in this paper for classifying func-
tional data which arise naturally in a wide variety of signal process-
ing applications, such as brain computer interfacing, speech recog-
nition, or image classification. Based on a new and improved family
of Bayesian classifiers, we extend hierarchical Bayesian classifica-
tion methodology from vector to functional settings. We provide
theoretical and practical motivations to our approach which relies
on Dirichlet process mixtures and Gaussian processes. The perfor-
mance is evaluated on phoneme recognition task, and compared to
that of Functional Support Vector Machines (FSVMs).

Index Terms— Functional data analysis, supervised classifica-
tion, Dirichlet process mixtures, Gaussian processes, MCMC.

1. INTRODUCTION

In many Signal Processing applications, the data are collected
by sampling a random process realization that can be seen as
a continuous function. One may think about such functions as
defined over time or/and space. Examples are electroencephalo-
gram (EEG) signals in Brain Computer Interfacing (BCI) [1], pitch
contours in speech synthesis [2], or functional magnetic resonance
images (fMRI) in neuroimaging [3]. Functional data analysis (FDA)
is a very attractive field of research that provides the possibility to
fully exploit specific properties of the functions that describe these
continuous data. For an introduction to relevant concepts and poten-
tial applications of functional data analysis, we refer the reader to
the book by Ramsay and Silverman [4].

There is clearly a number of compelling reasons for developing a
classification methodology in the functional data framework instead
of applying multivariate analysis; most importantly: (1) taking into
account relationships between samples and the functional nature of
data (e.g. smoothness of the curves underlying the discrete observa-
tions) ; (2) dealing with the case where the observation locations (or
data acquisition intervals) are different from one curve to another ;
(3) controlling and reducing the errors in the measurements (noisy
observations).

The idea developed in this paper is to extend existing functional
analysis methods to address the supervised classification problem,
when a set of training data is available. This concerns a number of
applications such as listed above, and is therefore a key task in many
Signal Processing problems. In a recent work [5], the authors de-
velop a generative classifier for vectorial data based on hierarchical
Bayesian models and Markov chain Monte Carlo (MCMC). In this
work, the model parameter prior distribution is assumed to be a mix-
ture of Dirichlet processes (DPM) which have the advantage of de-
scribing accurately a large class of probability distributions. In [5], it

is shown that the learning algorithm performance is high, and outper-
forms SVMs, in classifying altimetric satellite measurement signals.

A primary motivation for our paper is to build on this previ-
ous study and extend the DPM-Bayesian supervised classification
method to the case where input data (signals) are functions. Con-
trary to [5] in which data are considered to be vectors, this paper
assumes them to be realizations of Gaussian Processes (GP) so as
to take into account the inherent functional nature of the data. It is
interesting to mention here that though some concepts on the use
of Dirichlet process mixtures with Gaussian processes are proposed
in [6], the present work addresses supervised classification rather
than clustering, and use a DPM as a prior over the GP parameters.

A key feature of the proposed framework is that when no precise
generative data model can be defined, the GP model can be used as
a powerful modeling alternative, as the smoothness of the data can
be controlled by selecting a given covariance function to define the
GP. In other words, the proposed framework assumes that each data
sequence in the training set is sampled from a GP realization, each
class being characterized by the statistics of the GP underlying each
sequence of data. Its interest is that is quite flexible, and can be
applied in a number of applications.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present the proposed functional classifier based on Gaus-
sian processes and Dirichlet process mixtures. We illustrate the per-
formance of our approach through phoneme recognition experiments
in Section 3. Section 4 provides some conclusions and future work
directions.

2. SUPERVISED FUNCTIONAL CLASSIFIER

Gaussian processes have received substantial attention in machine
learning and statistics communities in recent years [7, 8]. They pro-
vide flexible tools for various problems, such as Bayesian regression.
More recently, a Bayesian Dirichlet process mixture of Gaussian
processes was proposed in [6] to deal with the clustering problem
in unsupervised settings. In this section we show how to build on it
a new supervised functional classifier, by merging with the approach
in [5]. To represent observed data as functions, we consider each
input signal, denoted x(·), to be a realization of a Gaussian process.

2.1. Methodology

Consider a supervised classification problem of functional data with
K classes denoted as C1, ..., CK , each containing a set of training
data (functions) Xk = {x1,k(·), . . . ,xNk,k(·)}, k = 1, . . . ,K.

These functions are assumed to rely on a covariate t ∈ R
d, while

the function itself takes its values in R. For time series, d = 1
and t is times while for images, d = 2 and t are the coordinates
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in the image plane. A practically important assumption is that a
continuous signal xi,k(·) is known through a set of observed points
{xi,k(t

i,k
p ), p = 1, · · · , T i,k} ∈ R where ti,kp ∈ R

d. Note that

neither the sampling coordinates ti,k’s nor the number of samples
T i,k’s are assumed to be the same for all the signals.

Modeling functional data with Gaussian processes. We assume
each xi,k(·), i = 1, . . . , NK is a realization of a Gaussian process
(GP) and has the following generative model

xi,k(·) ∼ GP(xi,k(·);mi,k(·),Ki,k(·, ·)) (1)

where ∼ means “distributed as”. A Gaussian process is character-
ized by its mean function mi,k(·) : R

d → R and its covariance
function Ki,k(·, ·) : Rd ×R

d → R, and its outcomes are functions.
Following the work of Shi [8], we will assume that the functions
xi,k(·) are generated from zero-mean GPs, that is, mi,k(·) ≡ 0, and
we consider covariance functions having the form

Ki,k(s, t;θi,k) = a0 + a1

d∑
q=1

sqtq

+ a2 exp

(
−1

2

d∑
q=1

bq|sq − tq|2
) (2)

with (d+3)-dimensional parameter θi,k = {a0, a1, a2, b1, · · · , bd},
for (s, t) ∈ R

d × R
d. The parameters θi,k belong to a space Θk,

i = 1, . . . , Nk. Note that we will not focus in this paper on this spe-
cific choice of the covariance function, the methodology presented
here remains valid for other forms than (2). In the following, to
keep the notations short, we use θk to denote the set of parameters
{θ1,k, · · · , θi,k, · · · , θNk,k} for class #k.

Bayesian supervised classification framework. Let Lk(xk|θk)
denote the likelihood of observing xk, assumed to belong to class
Ck. If we assume that xk is observed through a set of T sam-
ples (therefore, a T -dimensional vector), then its likelihood is a T -
dimensional multivariate normal distribution NT which satisfies the
following relation

L(xk|θk) = NT (xk; θk)

∝ (2π)−
T
2 |K(·, ·; θk)|− 1

2 exp

[
−1

2
(xT

k K(·, ·; θk)−1xk)

]
(3)

where |K(·, ·; θk)| denotes the determinant of K(·, ·; θk) and ∝
stands for “is proportional to”. Now, following the Bayesian
methodology, let p(θk|Xk) be the posterior probability density
function (pdf) for θk given the training data set Xk of class Ck. A
new observation function x can be classified thanks to the predictive
pdf p(x|Xk), k = 1, . . . ,K as follows

p(x|Xk) =

∫
Lk(x|θk)p(θk|Xk)dθk (4)

By assuming the classes have the same prior probabilities of occur-
rence, the Bayesian maximum a posteriori (MAP) classifier assigns

x to the class k̂ = argmaxk p(x|Xk). To compute p(x|Xk) for a
given class Ck, the distribution p(θk|Xk) has to be estimated: this
is the aim of the training phase in Bayesian supervised classification.
In this work, a nonparametric hierarchical model is used to the model
each signal parameters θi,k pdf, yielding p(θi,k|φk) where φk is a
set of hyperparameters with prior pdf p(φk) (see, e.g., [5] and refer-
ences therein for details). The posterior pdf of the class parameters

θk is given by

p(θk|Xk) =

∫
p(θk,φk|Xk)dφk

=

∫
p(θk|φk)p(φk|Xk)dφk

(5)

where

p(φk|Xk) =

∫
. . .

∫
p(θ1,k, . . . , θNk,k,φj |Xk)

dθ1,k . . . dθNk,k

∝
∫
. . .

∫
p(φk)

Nk∏
i=1

[Lk(xi,k|θi,k)p(θi,k|φk)]

dθ1,k . . . dθNk,k

To sum up, in this work we use a parametric model for the GP
covariance Ki,k(·, ·), then we adopt the Bayesian framework and
place a prior directly on the parameters of Ki,k(·, ·). As demon-
strated in [5], Dirichlet Process Mixtures (DPM) are suitable tools to
model prior knowledge over parameters. This allows for a flexible
nonparametric modeling framework. Therefore, in the following,
p(θk|φk) is assumed to be a DPM.

Hierarchical DPM prior for the model parameters. A DPM
model can basically be thought of as a simple mixture model given
by the mixed pdf θi,k ∼ p(θi,k|φi,k) and prior φi,k ∼ G(φi,k)
where G itself is the random outcome of a Dirichlet Process
DP(G0(ϕk), α) (that is, a probabilistic distribution over proba-
bilistic distributions). In summary, we have :

θi,k|φi,k ∼ p(θi,k|φi,k)

φi,k|G ∼ G(·)
G|ψk ∼ DP(G0(ϕk), α)

where ψk = {α, ϕk} is the hyperparameter vector, with ϕk a given
parameter vector for G0. A full definition of this model can be found
in [6]. This model can be re-written by introducing a probability
density function (pdf) F according to which each θi,k is distributed
from, θi,k ∼ F (.). The pdf F is defined by marginalizing out G:

F (θi,k) =

∫
φi,k

p(θi,k|φi,k)dG(φi,k) (6)

In our case, for the sake of generality, the mixed distribution is as-
sumed to be a (d+3)-dimensional multivariate Gaussian distribution

p(θi,k|φi,k) = N(d+3)(θi,k;μ,Σ) (7)

where φi,k = {μ,Σ} contains the hyperparameters (μ is the mean
vector and Σ is the diagonal covariance matrix). This DPM prior
model yields a very large family of pdfs over parameters θi,k

Hyperparameter prior using DP. We use the DP prior to ensure
reliable statistical inference for the hyperparameters of interest, that
is φk. The advantage of applying the DP prior to hierarchical mod-
els has been addressed extensively in the statistics literature, mostly
in recent years, see for example [9]. Note that mixture models us-
ing a DP as a prior have become increasingly popular for modeling
when conventional parametric models would impose unreasonably
stiff constraints on the distributional assumptions.

By integrating over G through the so called polya urn representa-
tion, we see that the joint distribution of φk = {φ1,k, · · · ,φNk,k

}
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may be factored into a product of successive conditional distribu-
tions of the following form:

φi,k|φ−i,k, ψk ∼ 1

α+Nk − 1

Nk∑
j=1,j �=i

δφj,k
+

α

α+Nk − 1
G0

where φ−i,k denotes φk\φi,k. This factorization implies that φi,k

has discrete, though infinite, support. This implies that a random
draw from G either equals one of the previous draws or is drawn
independently from the base probability measure G0.

Note that DP(G0(ϕk), α) may be represented in an equivalent
way by its latent variables and cluster locations (U, z). Therefore,
in the following we introduce the notion of a class label zk assigned
to each hyperparameter φk. We set z = {zk, k = 1, · · · , N} and
we denote by I(z) the set of values taken by the labels. The location
variables are denoted U = {Ul, l = 1, · · · , L} such that φk =
Uzk . Here, the Ul’s give the model hyperparameters, while zk’s
indicates their corresponding labels, such that zk = l.

From the polya urn probabilities, we can claim that the draws
for the indicator variables are obtained according to the following
sampling scheme:

zk ∼ Pr(zk|G) =

{
N−k,l(z)

α+N−1
for l ∈ I(z)

α
α+N−1

for a new l ∈ I(z)

where N−k,l(z) =
∑N

k′=1,k′ �=k δl,z′k , the number of z′k’s (k′ �=
k) which equal l. For computational reasons, we assume for G a
conjugate normal inverse Wishart base distribution

G0(ϕk) = NIW(μ,Σ;μ0, κ0, ν0,Λ0),

= N (μ;μ0,Σ/κ0)IW(Σ; ν0,Λ0),

where μ0, κ0, ν0, Λ0 are the base function hyperparameters (to which
might be added the DPM hyperparameter α) and IW(Σ; ν0,Λ0) is
the inverse Wishart distribution.

2.2. Efficient sampling

Since it is generally not easy to derive an exact analytical expression
for computing the posterior distribution p(θk|Xk) in (5), the use of
MCMC methods permits to generate a Markov chain whose limit-
ing distribution is equal to the desired target distribution. Typically
the full conditionals can be sampled from using Gibbs or possibly
Metropolis-Hastings updates [10].

Assume a set of samples θ̃
(n)
k , n = 1, . . . , Niter, distributed ac-

cording to p(θk|Xk) (defined in (5)) is available. Then, the integral
in Eq.(4) can be estimated as follows

p(x|Xk) =

∫
Lk(x|θk)p(θk|Xk)dθk ≈ 1

Niter

Niter∑
n=1

Lk(x|θ̃(n)
k )

A standard way of generating samples θ̃
(n)
k distributed according to

p(θk|Xk) is provided in Algorithm 1. In the following, note that the
class subscript k will be omitted for notational clarity. Given N sig-
nals x1, . . . ,xN and the parametric model in eq.(1)-(2), we aim at
estimating the class labels z = {zk}k=1,...,N as well as the cluster
locations U. In the following, we derive the posterior parameter dis-
tribution formulated above. Building on [6, 5] yields the following
sampling strategy referred to as Algorithm 1.

Algorithm 1: Sampling from the class posterior distribution

% Step 0: Initialization

– Set α to a high fixed value α0

– For i = 1, . . . , N , sample from the Polya urn φ̃
(0) ∼

p(φ|φ̃(0)
1 , . . . , φ̃

(0)
i−1) and deduce z̃(0) and Ũ(0)

– For i = 1, . . . , N , sample θ̃
(0)
i ∼ f(θ|φ̃(0)

i )

% Step 1: Iterations For n = 1, . . . , Niter, do

1.0- Update the precision parameter as : αn = αn−1+η(τ−
αn−1)

1.1- Sample z̃(n) ∼ P(z|Ũ(n−1), θ̃
(n−1)

) (more details are
in [5, pp.1793])

1.2- Sample Ũ(n) ∼ p(U|z̃(n), θ̃
(n−1)

) (more details are
in [5, pp.1793])

1.3- Sample θ̃
(n) ∼ p(θ|z̃(n), Ũ(n)): for i = 1, . . . , N , sam-

ple θ̃
(n)
i ∼ p(θi|xi, Ũ

(n)

z̃
(n)
i

) ∝ L(xi|θi)f(θi|Ũ(n)

z̃
(n)
i

) us-

ing, e.g, a MH step

1.4- Sample ξ̃(n) ∼ P(ξ|z̃(n)) such that P(ξ = k|z̃(n)) =
1
N

∑N
i=1 δk,z̃(n)

i

1.5- Sample θ̃(n) ∼ f(θ|Ũ(n)
˜ξ(n)

)

2.3. Discussion

In this work, we applied MCMC methods to compute efficiently the
class posterior p(θk|Xk) based on a nonparametric mixture model.
Whilst MCMC provides a convenient way to draw inference from
such complicated models, there are some problems associated with
the MCMC analysis of mixtures. The problems are mainly caused
by the non-identifiability of the components under symmetric priors,
which leads to the so called label switching in the MCMC output.
This means that ergodic averages of specific components parameters
in the mixture will be identical and thus useless for inference. For
a review of some solutions to the label switching problem see [11]
and references therein.

To deal with this limitation, we define a prior over the hyperpa-
rameter α. The convergence of the above algorithm is made easier
by initializing α at a large value and letting it decrease through an
annealing (tempering) scheme. The initial annealing parameter will
be set to an initial fixed value α0 and then it will be geometrically
updated according to αl = αl−1 + η(τ − αl−1), at each time step
(the parameter, η, can be set to 1/100 for example).

Note that α is the prior parameter on the number of components
in the mixture. By decreasing αwe construct a sequence of annealed
target posterior distributions. This process leads to a sequence of
intermediate distributions that help in exploring the high probabil-
ity regions of the target posterior. Note that as l → ∞, αl → τ
that ensures convergence to the true target posterior. More precisely,
α plays the role of a tempering parameter. As this tempering pa-
rameter is reduced, the distributions become sharply peaked at the
global maxima of the target distribution. However, it is important to
mention that there is no guarantee that the samples are distributed
according to the target distribution at iteration t all the more since
α may not be decreased slowly enough. To make sure the MCMC
algorithm converges to the desired distribution as the number of sim-
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ulated annealing runs grows, a Sequential Monte Carlo Sampler can
be applied in the spirit of [12]. In this procedure, several Markov
chains are simulated in parallel and are assigned weights to correct
for the discrepancy between the sampling distribution and the de-
sired posterior distribution.

3. EXPERIMENTS

In this section, we first assess the performance of our supervised
functional classification algorithm on synthetic data. Then, we pro-
vide some results obtained with phoneme recognition data, where
functional data (and more specifically curves data) occur natu-
rally. The aim of the experimental evaluation is twofold. First to
illustrate the potential of adopting a nonparametric Bayesian ap-
proach for functional data, and second to inspect how effective
functional classification under our framework is, compared to func-
tional SVMs [13].

3.1. Synthetic data

The data tested here are generated using GPs with known param-
eters. The assumptions concerning the model hyperparameters are
the same as in [5, pp.1787]. We set d = 1 and α0 = 20 and in
order to check that the algorithm accurately learns the values of the
model parameters for each training data set, we used Monte Carlo
runs that consist of 1000 iterations (including 400 burn-in itera-
tions). Then, in order to assess the learning ability of our classi-
fier, we used data grouped into 2 classes, referred to as C1 and C2.
We set a0 = a1 = 4 for both classes, a2 = 20, b1 = 15 for C1

and a2 = 5, b1 = 9 for C2. It should be noted that the ampli-
tudes of the generated signals show some similarities from one class
to another. Signals were selected randomly for training (30 signals
for each class) and testing (20 signals for each class) steps, and the
MCMC algorithm was run independently on these two data sets. 1-
dimensional signals are considered with different sampling coordi-
nates. To make decision about the class of each testing signal, the
MAP classifier assigns each signal to the class maximizing its pre-
dictive pdf as in (4). The classification results are reported in Table 1.

3.2. Phoneme recognition data1

The data were extracted from the TIMIT database which is a widely
used resource for research in speech recognition, and consist of 4509
log-periodograms corresponding to recording phonemes of 32 ms
duration. Following [13], we consider only the most difficult sub-
problem in the database which consists in classifying the phoneme
“aa” in “dark” against “ao” in “water”. The database is a multi-
speaker database. There are 325 speakers in the training set and 112
in the test set. We have 519 examples for “aa” in the training set
(759 for “ao”) and 176 in the test set (263 for “ao”). Table 2 reports
the classification error rate obtained using Functional SVMs and the
proposed DPM-based functional approach. Functional SVMs results
are reproduced from [13]. In the phoneme recognition data, we ob-
tain satisfactory results; the performance of our functional generative
classification method is equivalent, or slightly better than, functional
SVMs performance.

4. CONCLUSION

We have proposed a supervised, nonparametric Bayesian approach
for classifying functional data, where observed continuous signals

1http://stat.stanford.edu/ tibs/ElemStatLearn/datasets/phoneme.data

Table 1. Confusion Matrix for the two-class classification problem using
the proposed algorithm.

Estimated Class: 1 Estimated Class: 2

True class: 1 85% 15%

Tue class: 2 10% 90%

Table 2. Classification error rate for Functional SVMs and our generative
functional method on the phoneme recognition data.

Functional SVMs DPM-based functional classifier

19.4% 17.8%

are expressed by GPs and the parameter priors by Dirichlet pro-
cess mixtures. Experiments have shown that the proposed algorithm
achieves good classification results and performs slightly better than
Functional SVMs in the phoneme recognition data. However, a
more extensive benchmark study remains to be pursued. In future
we will explore more experiments, not only on functional datasets
but also on time-series and longitudinal datasets, and compare our
DPM-based functional approach with other previous discriminative
and generative functional methods, such as those in [14, 15].
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