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ABSTRACT

In this paper we present an automatic classification system for
ground penetrating radar (GPR) signals. The system extracts
the magnitude spectra at resonant frequencies and classifies
them using support vector machines. To locate the resonant
frequencies, we propose an approach based on compressed
sensing and orthogonal matching pursuit. The performance
of the system is evaluated by classifying GPR traces from
different ballast fouling conditions. The experimental results
show that the proposed approach, compared to the approach
of using frequencies at local maxima, represents the GPR sig-
nal more efficiently using a small number of coefficients, and
obtains higher classification accuracy.

Index Terms— compressed sensing, frequency selection,
ground penetrating radar, pattern classification

1. INTRODUCTION

Ground penetrating radar (GPR) exploits electromagnetic
fields to probe lossy dielectric material. It excels in non-
destructive detection of buried objects that are beneath the
shallow earth surface or in visually impenetrable structures
[1]. GPR has attracted considerable interest in many areas,
such as archaeology [2], road construction [1], and mineral
exploration and resource evaluation [1].

In railway transportation, the ballast is an essential com-
ponent for proper railway operation. To ensure safety, regular
inspection of rail tracks must be conducted. However, the
traditional approach is labor-intensive and time-consuming.
Thus, the rail industry is searching for new and more cost-
effective approaches. As a non-destructive detection tool,
ground penetrating radar has attracted great interest in rail-
way ballast evaluation in recent years [3].

In this paper, we present an automatic classification sys-
tem to assess railway ballast conditions. The system is based
on the extraction of magnitude spectra at resonant frequen-
cies and their classification using support vector machines.
Feature selection plays an important role in pattern classifi-
cation. Over the past three decades, many feature selection
techniques have been proposed; for a review, see [4] and refer-
ences therein. Peng et al. presented a two-stage algorithm by

combining the minimal-redundancy maximal-relevance crite-
rion and the other approaches such as wrappers [5]. Their ex-
perimental results show that, compared to other approaches
such as max-dependency and max-relevance, the two-stage
algorithm improves feature selection and classification per-
formance. Yang et al. proposed a compressed sensing-based
algorithm for dimensionality reduction [6]. This approach
was evaluated on a pedestrian detection task. The experimen-
tal results show that the proposed algorithm achieves compet-
itive performance using a small number of features.

To locate resonant frequencies, we propose a frequency
selection approach based on feature selection using com-
pressed sensing. Our method is aimed at reducing feature
dimensionality and extracting informative frequencies. The
remainder of the paper is organized as follows. In Section
2, a brief introduction to feature selection and compressed
sensing is given, and the automatic classification system for
GPR signals is introduced. In Section 3, the experimental
methods and results are presented, followed by concluding
remarks in Section 4.

2. METHODOLOGY

The proposed automatic classification system includes three
main stages: pre-processing, feature extraction, and classifi-
cation. The system block diagram is shown in Fig. 1. When
a GPR signal is received, features are extracted from the sig-
nificant frequencies automatically, and then sent to a trained
classifier for assessment of railway ballast condition.

Fig. 1. Block diagram of the proposed automatic classifica-
tion system.

The pre-processing stage employs basic signal processing
techniques to reduce the intrinsic interferences introduced by
the GPR and ensure the sampling rate consistency of the time-
domain signals. Such preprocessing techniques include pre-
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processing techniques DC component removal, re-sampling
and time shifting.

Because the frequency spectrum of the GPR return re-
veals the characteristics of the materials on the electromag-
netic wave path, we propose to use frequency features to cat-
egorize ballast fouling conditions. We have observed empir-
ically that the traces from ballast of different fouling condi-
tions possess different magnitude spectra. Therefore, features
are extracted from the magnitude spectra at salient frequen-
cies. The salient frequencies are located where resonances
occur. The selection of the salient frequencies, using a com-
pressed sensing approach, is described next.

2.1. Frequency selection via compressed sensing

The Shannon sampling theorem states that, in order to recon-
struct the original signal perfectly, the sampling frequency
must be at least twice the highest frequency of the input sig-
nal. Recently, a new theory known as compressed sensing
(CS) indicates that sparse signals can be reconstructed from
a small number of linear and non-adaptive measurements that
are under-sampled [7].

Suppose we have a signal x in Rn. The �0 norm of x,
denoted by ‖x‖

0
, is defined as the number of non-zero en-

tries in x. If ‖x‖
0

= k, the vector x is called k-sparse.
Given m linear measurements of the signal x, y = Ax, the
sparse signal x can be recovered almost perfectly, even when
m << n, provided some conditions are satisfied [7]. The vec-
tor y ∈ Rm and matrix A ∈ Rm×n are called the measure-
ment vector and the measurement matrix, respectively. Find-
ing the sparsest x is equivalent to solving the following �0
minimization problem,

min ‖x‖
0

subject to y = Ax. (1)

However, this minimization problem results in high compu-
tational cost [7]. Several alternative approaches have been
proposed to solve this problem, such as reweighted �1 mini-
mization [8], gradient projection [9] and orthogonal matching
pursuit (OMP) [10].

Our aim is to locate the salient frequencies from the train-
ing data. This is equivalent to finding a representative sub-
set of frequencies, which best represents the relationship be-
tween the frequency components and the class labels. There-
fore, to adopt the compressed sensing paradigm for feature
selection, we construct the measurement matrix using the fre-
quency spectra of GPR signals and employ the class label set
as the measurement vector.

Consider m training samples that belong to K classes

{(s1, y1), (s2, y2), . . . , (sm, ym)},

where si is a GPR trace and yi ∈ {1, 2, . . . ,K} is the class
label. In our case, the matrix A is obtained by applying the n-
point discrete-time Fourier transform to each trace; each col-
umn of A represents one frequency component. The m × 1

vector y contains the class labels of the corresponding traces.
Let x define the sparse vector that represents the salient fre-
quencies. The frequency selection problem can be formulated
as a CS problem, Eq. (1). Note that our focus is not the
nonzero coefficient values in x but the coefficient positions,
which indicate the selected frequencies.

The greedy algorithm OMP has been adopted to solve the
�0 minimization problem [10]. The main steps of OMP are
described as follows:

1. Initialize the iteration index, t = 1, a residual signal
r0 = s, and an empty matrix Φ0 = ∅.

2. For the t-th iteration, locate the atom at (a column of
A) that has the strongest correlation with the residual
rt−1, and augment the matrix of previously selected
atoms as Φt, Φt = [Φt−1,at].

3. Solve xt = arg min
x

‖y − Φtx‖2.

4. Calculate the residual rt, rt = y −ΦΦΦtxt.

The OMP identifies one significant frequency at a time
and approximates the target function iteratively; it ensures the
same frequency is not selected twice. Note that, feature se-
lection is dual to sparse approximation. Selected frequencies
can be ranked in the same order of OMP iterations. Once the
significant frequencies are located by OMP, features can be
extracted as the magnitude spectra at these frequency points.

2.2. Classification using SVMs

There are many methods available for pattern classification,
such as discriminant analysis, decision trees, k-nearest neigh-
bors, Bayesian classifier, neural networks and support vector
machines (SVMs). Here, we choose SVMs as the classifica-
tion tool because they have good generalization ability [11].
SVMs utilize explicit decision functions and are formulated
for two-class problems. It is necessary to extend the SVM
formulation to handle multi-class problems. There are several
ways to extend SVMs; one-versus-all and pair-wise SVMs are
two common approaches. In this paper, we adopt one-versus-
all SVMs because this approach can handle effectively sam-
ples that do not carry sufficient resonances.

3. RESULTS AND ANALYSIS

In this section, we first explain the experimental data, then
present the experimental results, including the selected signif-
icant frequencies and classification performance. Finally, we
compare the OMP-selected features with local maxima fea-
tures. The classifier generalization ability is evaluated using
five fold cross-validation.

The data set used in the experiments was collected along
an existing railway track in Wollongong station, Australia
[12]. It consists of data from three different types of ballast
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based on the most common ballast fouling conditions: (i) 50%
clay fouled ballast, (ii) clean ballast, and (iii) 50% coal fouled
ballast. This data set can be divided into three subsets based
on the antenna heights: 200 mm, 300 mm, and 400 mm data
subsets. Each data subset consists of GPR traces from three
different types of ballast. In total, there are 1382 traces in the
200 mm subset, 1386 traces in the 300 mm subset, and 2092
traces in the 400 mm subset; refer to [12] for more details.

3.1. Analysis of frequency selection and classification rate

In this section, we present the overall classification rates using
different numbers of frequency points. The classification rate
is the percentage of test samples that are correctly classified.
Figure 2 shows the most significant 25 frequencies found us-
ing the OMP algorithm. It is clear that all the 25 frequencies
are in the range of [0, 3fa], where fa represents the antenna
centre frequency (800 MHz). Moreover, the frequencies with
highest weights are close to the antenna centre frequency in
all data subsets.
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Fig. 2. Salient frequencies selected by OMP and their
weights, for different antenna heights. The bar height indi-
cated the weight of the corresponding frequency. From left to
right, the data used are 200 mm subset, 300 mm subset, 400
mm subset, and combined data set.

Figure 3 compares the classification rates using different
numbers of significant features from the 200 mm, 300 mm,
and 400 mm data subsets, respectively. The system perfor-
mance improves steadily with increasing number of signifi-
cant frequencies.

• On the combined data set, using only 3 frequency
points, the classification rate reaches 93.0%. When
the number of frequency points reaches 6, the clas-
sification rate increases to 99.6%. Once the feature
size reaches 10, the system performance remains stable
with a classification rate of 100.0%.

• On the 200 mm data subset, when there are fewer than
4 frequency points, the classification rates are below
90.0%. When the number of frequency points reaches
4, the classification rate increases to 95.1%.
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Fig. 3. Overall classification rates using different numbers of
significant frequencies.

• On the 300 mm data subset, the system is able to clas-
sify the test set at a classification rate of 97.6% with 4
significant frequencies.

• For data of 400 mm antenna height, when the feature
vector size is as small as 5, the system achieves an over-
all classification rate of 99.9%. When the feature vector
size increases, the classification rate reaches 100.0%.

3.2. Comparison with local maxima features

We compare the OMP-selected features with the features ex-
tracted at local maxima. The local maxima are located via
the morphological operation dilation in the frequency range
[0, 3fa] [12].
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Fig. 4. Compare OMP-selected features with features at local
maxima on the combined 800 MHz data set.

Figure 4 shows that the OMP-selected features achieve
higher classification rates when fewer than 20 feature points
are used. When the feature size reaches 20, both approaches
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Table 1. Compare OMP-selected features with features at
local maxima on the 200 mm, 300 mm, and 400 mm data
sets, respectively.

Number of frequencies
Data set Features required for the CR of

95.0% 99.0% 100.0%
200 mm OMP-selected 4 5 6

Local maxima 10 14 17
300 mm OMP-selected 4 7 19

Local maxima 6 12 27
400 mm OMP-selected 3 5 6

Local maxima na 8 10

reach a classification rate of 100.0%. The comparison on the
data subsets is given in Table 1. The results show that the
OMP-selected features can achieve a high classification rate
using fewer features than the local maxima approach.

To compare the computational cost, we evaluate the ex-
ecution time of both approaches on a computer with Intel
Q9400 (2.66 GHz) CPU and 3.23 GB RAM. The experiments
are conducted on 10 data sets, each containing 20 traces. The
average time of 10 sets is given in Table 2. The results show
that the OMP search has an advantage over the local maxima
approach in terms of computational cost.

Table 2. Computation time of OMP and local maxima search
algorithms (in milliseconds).

Number of features 8 11 14 17
Local maxima 7.67 7.68 7.70 7.72
OMP search 0.17 0.26 0.37 0.56

4. CONCLUSIONS

In this paper, we have presented a frequency selection method
based on feature selection using compressed sensing. This ap-
proach is integrated into an automatic GPR classification sys-
tem, and evaluated using real-world railway GPR data. The
experimental results indicate that the feature selection scheme
is able to find a compact representation of ground penetrating
radar signals. Furthermore, the selected feature set performs
well in ballast fouling classification, and the CS-selected fea-
tures outperform the local maxima features.
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