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ABSTRACT

A novel approach to estimate (inverse) complex covariance ma-
trices is proposed. By considering the class of unitary invariant es-
timators, the main challenge lies in estimating the underlying eigen-
values from sampled versions. By exploiting that the distribution of
the sample eigenvalues can be derived in closed form, a Maximum
A Posteriori (MAP) based scheme is then derived. The performance
of the derived estimator is simulated and results indicate that the
proposed scheme shows performance similar to one of the best esti-
mators known to date. The main advantage lies in that the proposed
solution only requires numerical optimization over a P -dimensional
space where P is the size of the covariance matrix.

1. INTRODUCTION

Complex covariance matrices appear as natural components in a vast
variety of array and statistical signal processing applications. Mean-
while, in most of these applications, the underlying covariance ma-
trices, or more often their inverses, are not known but rather have to
be inferred, either explicitly or implicitly, from measured data. Co-
variance matrix estimation is hence a fundamental problem that has
turned out to be particularly challenging. Although proper treatment
of the covariance matrix is vital for many classical array and signal
processing problems, up until recently only limited efforts can be no-
ticed in the signal processing community while most of the results
stem from the statistics literature and the real valued problem.

The main difficulty is that the natural estimator, the sample co-
variance matrix (SCM), has a tendency to separate estimated eigen-
values, see, e.g., [1] and references therein. This in turn lead to
deteriorated conditioning and noise enhancement while used in sub-
sequent processing. Although this behavior stems from the underly-
ing structure of the problem, its effect has mostly been studied for
Gaussian distributed data, for which the SCM corresponds to the
Maximum Likelihood (ML) estimator.

Estimators that attempt to overcome the eigenvalue spread, so-
called shrinkage estimators, have therefore been studied frequently
in the literature. Most of the efforts focus on the real-valued prob-
lem and most are based either on the Bayesian methodology or by
asymptotic arguments as the dimension of the problem increases, see
e.g. [1, 2, 3] and references therein. The Bayesian approaches often
suffer from the fact that the most promising solutions tend to lack
analytical solutions, whereby numerical integration is often neces-
sary. As the number of unknowns is in the order of P 2 where P
is the size of the covariance matrix, this often limit the applicabil-
ity of these techniques, especially for large problems. Meanwhile,
estimators derived from asymptotic arguments cannot guarantee ap-
propriate performance for small problems. The purpose of this paper

is to derive a well behaved estimator that does not assume assymp-
totical arguments and only require numerical optimization over a P -
dimensional space.

As mentioned, most of the results concerning covariance ma-
trix estimation target the real-valued problem. Meanwhile, array and
signal processing problems often treat the complex data case. Pleas-
ingly for signal processing applications, however, it turns out that
the complex-valued problem has a simpler structure that opens up
for further analytical studies, and improved results. A noticeable
distinction is for instance that the distribution of the SCM eigenval-
ues, for the complex case, can be derived in closed form. Since the
SCM constitutes a sufficient statistic for the problem at hand, this
result together with a unitary invariant assumption gives us all the
components required in order to infer the covariance matrix from
data. To the best of the authors knowledge, this approach has yet to
appear in the literature and is the focus of this paper.

2. BACKGROUND AND NOTATION

Assume a measured P ×N -dimensional matrix with N ≥ P ,

Z = [z1, z2, . . . , zN ]. (1)

The P -dimensional vectors, zn, n = 1, ..., N , are assumed to be
independent and identically distributed (i.i.d.) samples from a zero-
mean complex Gaussian distribution with covariance matrix R. For
the purpose of estimating the covariance matrix, R, or its inverse,
R−1,

S = ZZ
H =

N∑
n=1

znz
H
n (2)

is a minimal sufficient statistic. Hence, all information regarding R

orR−1 which is included in Z is also contained in Swhich is known
to be complex Wishart distributed, see e.g., [4, 5]. Let λ1, . . . , λP

denote the eigenvalues of S and define λ = [λ1, . . . , λP ]
T and

Λ = diag(λ), with diag(·) being the diagonal matrix with the el-
ements of the vector argument along the main diagonal. Using the
eigenvalue decomposition, the matrix S can now be expressed as

S = UΛU
H , (3)

where U is a unitary matrix containing the eigenvectors of S. Our
primary concern in this paper is to estimate R−1, not R. In fact, this
is not a restriction of the approach but rather the choice is made out
of notational convenience, as will be understood later. Furthermore,
inferring the inverse is often more desirable as, due to pre-whitening,
R−1 and not R usually appear as the natural component in many
array and signal processing applications. Using similar notation as
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above, we can decompose the underlying inverse covariance matrix
R−1 as

R
−1 = VDV

H . (4)

As previously highlighted, the main challenge concerns estimation
of the eigenvalues d1, . . . , dp contained in D. We here make the
assumption that the considered estimator is unitary invariant, see [6].
With the above notation, the estimator can then be written on the
form,

R̂
−1(S) = U diag(φ(λ)) UH (5)

where d̂ = φ(λ) = [φ1(λ), . . . , φp(λ)]
T contains the estimated

eigenvalues of the inverse covariance matrix. Note that most consid-
ered estimators, e.g., the inverse sample covariance and the inverse
regularized (diagonally loaded) estimator, share this property.

3. EIGENVALUE ESTIMATION

From (5) it is apparent that the prime target is to find a suitable
mapping/estimator d̂ = φ(λ). For this purpose it is natural to study
the distribution of λ given d, i.e., the (integrated) likelihood. This
task is simplified by the fact that unitary invariance applies also to
the the distribution of λ, i.e., the distribution of λ depends only on
d and not on V, as shown below.

Theorem: Assuming that all eigenvalues of R−1 are distinct,
and that the sample eigenvalues λi are ordered, here λ1 > λ2 >
· · · > λp, then,

f(λ;R−1) = f(λ;d) = c

(
P∏

p=1

dNp λN−P
p

)
Δ(−λ)

det {Q}

Δ(d)

(6)
where Qi,j = e−λidj , Δ(−λ), Δ(d) are the Vandermonde deter-
minants

Δ(d) =
∏
i>j

(di − dj),

Δ(−Λ) =
∏
i<j

(λi − λj), (7)

and c is a constant (w.r.t. both d and λ) that normalizes the density.

This result, or part thereof, is well known in statistics, statistical
physics, and information theory, see for instance [7, 8]. However,
to the best of the authors knowledge, it has yet not appeared in the
signal processing literature. For completeness, a proof is hence pro-
vided in the Appendix. We also note that the result relatively easily,
through limit calculations, can be extended to cases with repeated
eigenvalues in d. The details of this extension are for space concerns
excluded in this paper.

Once equipped with the likelihood, several estimation proce-
dures are available. In this paper we will focus on a Maximum A
Posteriori (MAP) approach, for which a suitable prior is required.
In order to maintain a general perspective, we would like to apply a
non-informative prior. In [9] several plausible prior choices for R−1

are proposed and analyzed. Perhaps the most favorable option is the
reference prior, which in the eigenvalue parametrization is given as

π(d,V) ∝
1∏P

p=1
dp

dd dV. (8)

Here, dV denotes the invariant Haar measure over unitary matrices
[5]. A natural prior for d, given the independence between d and V

in (8), is then given as

π(d) ∝
1∏P

p=1
dp

, (9)

yielding the posterior distribution

f(d|λ) ∝
P∏

p=1

dN−1

p

det {Q}

Δ(d)
. (10)

From the construction of the problem, it is natural that the posterior
in (10) is invariant to reordering of the entries in d, since a corre-
sponding reordering in terms of eigenvectors yields the same R−1.
Meanwhile, in the final estimate for R−1 we want the eigenvalues
to be associated with the corresponding eigenvectors. As the entries
in λ are assumed to be in descending order and since d are inverse
measures, this can be obtained by using ascending ordering for d,
i.e., 0 < d1 ≤ d2 ≤ . . . ,≤ dP . The considered eigenvalue esti-
mates are thus given as

d̂ = φ(λ) = arg max
d

0 < d1 ≤ · · · ≤ dp

P∏
p=1

dN−1

i

det {Q}∏
i>j

(di − dj)
, (11)

where Qi,j = e−λidj , which together with (5) yield the final es-
timator. At this point we are convinced that a closed form expres-
sion for the estimator in (11) does not exist. Furthermore, neither
the function nor its logarithm appear to be convex. The experience,
however, is that the function to be optimized in (10) is well behaved
and easily amends itself to numerical optimization. To indicate the
desirable characteristics of the posterior function, Fig. 1 (a)-(b) show
level curves of f(d|λ) for two N = 5 and P = 2 examples; one
with well separated sample eigenvalues and one with fairly closely
separated sample eigenvalues. In Fig. 1, the eigenvalues of the in-
verse SCM, i.e., N/λp, are also shown (marked with ’*’) as they
could serve as a starting point for numerical optimization.

4. SIMULATIONS

The main challenge in covariance matrix estimation is to shrink the
sample eigenvalues in an appropriate manner. It is therefore natural
to investigate and compare the performance of the derived estima-
tor under varying separation in terms of the underlying eigenvalues,
contained in d. For simplicity we will, in this paper, evaluate the
P=2-dimensional case. The dependence on the underlying eigen-
value separation can then easily can be studied by varying the con-
ditioning 0 < d2/d1 ≤ 1. We note that d2/d1 = 1 represents white
noise while values close to zero characterize large separation.

In Fig 2, the results of a Monte Carlo experiments with 8000
repetitions are shown. For simplicity we have through out the sim-
ulations used d2 = 1. In order to also investigate the dependence
on sample support, one critically measured set-up (N = 2) and one
well sampled scenario (N = 4P = 8) are evaluated. The perfor-
mance of three different estimators are simulated. First, we consider
the inverse SCM, R−1 = N(ZZH)−1, which is the ML estima-
tor for the problem at hand. This estimator is referred to as ISCM.
The second estimator, denoted MAP, is the proposed one, as defined
by equations (5) and (11). As a reference estimator we have chosen
the Reference prior based Bayesian estimator proposed in [1, 10]. Of
course, any well behaved estimator can be used as a reference but we
have chosen the one in [1, 10] as it previously have been shown to
render very good characteristics for a wide variety of scenarios. The
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Fig. 1. Characteristics of the posterior function, f(d|λ), for P = 2 and N = 5. ’- -’ indicate the constrains to insure proper ordering,
where plausible values lie on or above the dashed line. ’*’ indicates the the ML estimate, i.e., N/λp which could serve as a staring point
for numerical optimization. From left to right (a)-(b). (a) Well separated sample eigenvalues, λ1 = 10 and λ2 = 1.5. (b) Closely separated
sample eigenvalues λ1 = 2.5 and λ2 = 2.

major drawback in utilizing it is that implementing the considered
estimator requires integration over a P 2-dimensional space, render-
ing it difficult to apply for large dimensional problems. In Fig 2, we
refer to this estimator as ref.

The estimators are evaluated using two performance measures.
The first measure, shown in Fig 2 (a) is given by the average error in
Frobenius norm,

dF (R
−1, R̂−1) = ||R−1 − R̂

−1||F .

Although it is usually considered to be a bad measure of error be-
tween two positive-definite matrices, see [11], it is included here
for comparison purposes as many authors decide to evaluate co-
variance matrix estimators using this measure. A more appealing
performance measure can be obtained by studying the geometry of
the space of positive-definite matrices. Then, the natural distance
(geodesic) can be derived as,

dN(R−1, R̂−1) =

√√√√ P∑
p=1

(ln(νp))
2,

where νp make up the eigenvalues of RR̂−1, see for instance [11,
12]. Among the many appealing properties of this measure are that
the distance to a non positive definite matrix is infinity and that
dN(R−1, R̂−1) = dN(R, R̂), see [12]. The performance of the
estimators in terms of natural distance is shown in Fig 2 (b).

From Fig 2 we note some pleasing characteristics of the pro-
posed estimator. First of all, it dominates the inverse SCM uniformly
both in terms of the amount of measured data and in terms of the un-
derlying eigenvalue spread. This is natural for any well designed
estimator. More pleasing is that the performance of the proposed es-
timator overall is similar to that of the reference prior based Bayesian
estimator which is known to be very good. We note that the proposed
estimator has a tendency to perform better for d2/d1 close to one
whereas its performance is slightly worse for problems with large
underlying spread. This indicates that the proposed estimator, simi-
lar to [6], has a tendency to over-shrink the eigenvalues. In fact, this

property can suspected from the properties of Fig 1 (b) as sample
eigenvalues close to each other have a tendency to end up in the di-
agonal, representing equal eigenvalues. Two ways to overcome this
would be to modify the chosen prior and/or to consider estimators
based on other criteria than MAP. These investigations are left for
future research. From Fig 2(a) we also note some of the limitations
of evaluating properties using the Frobenius norm. First of all, the
above described properties are not that evident in Fig 2(a). Also, we
note a limitation in that the Frobenius norm is very sensitive to ill-
conditioning, as the N = 2 simulation indicates. Even though the
result is based on 8000 repetitions, the corresponding curve is very
inconsistent.

5. CONCLUSIONS

The paper proposed a new methodology to estimate inverse complex
covariance matrices. As a side result, the distribution concerning
the eigenvalues of Complex Wishart distributed matrices was also
highlighted. A simple simulation example indicated that the pro-
posed estimator yields performance similar to that of one of the best
estimators known to date. The main advantages of the proposed es-
timator is that it does not rely on asymptotic assumptions nor that
numerical and high-dimensional integration is required. Although
the estimator is not given in closed form, the solution only requires
P -dimensional optimization (where P is the size of the covariance
matrix) over a function that appears to be well behaved.

6. APPENDIX

It is well known that S in (2) is complex Wishart distributed,

f(S;R−1) = c1|S|
N−p|R−1|Netr{−R

−1
S}|dS.

Here, etr{·}=exp{trace(·)} and c1 is a constant that normalizes the
density, see for instance [4, 5]. We note that the density is given with
respect to the elements of S. In order to find the eigenvalue distribu-
tion, we need to switch to the parametrization in (3) and integrate out
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Fig. 2. Simulation results for three different estimators: Maximum likelihood (ISCM), The proposed approach given by (5) and (11) (MAP),
The Bayesian solution using the reference prior [1, 10] (ref). From left to right (a)-(b): (a) Average error in terms of Frobenius norm. (b)
Average error in terms on natural norm.

the eigenvectors contained in U. Switching parametrization requires
the corresponding Jacobian, which is given by

dS ∝
∏
i<j

(λi − λj)
2dλdU = Δ2(−λ) dλ dU

where Δ(−λ) is the Vandermonde determinant defined in (7) and
dU is the invariant Haar measure over unitary matrices, see for in-
stance [5]. The joint distribution of the eigenvalues and eigenvectors
can therefore be expressed as

f(λ,U;R−1) ∝ (12)

∝ |R−1|NΔ2(−λ)
P∏

p=1

λN−P
p etr{−R

−1
UΛU

H}dλdU.

Now integrating this w.r.t the eigenvectors yields the desired density.
Furthermore, since the Haar measure is unitary invariant, we can
simplify this as

f(λ;R−1) = f(Λ;d) ∝ (13)

∝

(
P∏

p=1

λN−P
p dNp

)
Δ2(−λ)

∫
etr{−DUΛU

H}dU.

where D is a diagonal matrix containing the eigenvalues of R−1.
We note that the challenging part consists of evaluating the integral
above, known as the Harish-Chandra-Itzykson-Zuber integral. Its
solution is given by∫

etr
{
−DUΛU

H
}
dU =

(
P−1∏
p=1

p!

)
det {Q}

Δ(−λ)Δ(d)
, (14)

where Qi,j = e−λidj , and Δ(·) is the Vandermonde determinant,
see [13, 7]. An interesting comment is that the solution to this inte-
gral does not have a counterpart in the real case, i.e., the integration
over orthogonal matrices. Hence, the approach taken in this paper
can not straightforwardly be applied to the real data case.

Inserting the results in (14) into (13) we then obtain the desired
result. Note that the effect of ordering of the eigenvalues can be
incorporated into the constant that normalizes the density.
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