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ABSTRACT

When the observation dimension is of the same order of magni-
tude as the number of samples, the conventional estimators of co-
variance matrix and its inverse perform poorly. In order to obtain
well-behaved estimators in high-dimensional settings, we consider
a general class of estimators of covariance matrices and precision
matrices (i.e. the inverse covariance matrix) based on weighted sam-
pling and linear shrinkage. The estimation error is measured in terms
of the matrix quadratic loss, and the latter is used to calibrate the set
of parameters defining our proposed estimator. In an asymptotic set-
ting where the observation dimension is of the same order of mag-
nitude as the number of samples, we provide an estimator of the
precision matrix that is as good as the oracle estimator. Our research
is based on recent contributions in the field of random matrix theory
and Monte-Carlo simulations show the advantage of our precision
matrix estimator in finite sample size settings.

1. INTRODUCTION

Many applications of statistical signal processing require an estimate
of a precision matrix. If the number of samples is large compared to
the observation dimension, the sample covariance matrix is consis-
tent with the population covariance matrix and its inverse can be
effectively used as an estimator of the precision matrix. However,
for high-dimensional data, it is well known that the eigenvalues of
the sample covariance matrix considerably spread out from those of
the population covariance matrix [1, 2]; see also references therein.
Therefore, it is problematic to use the inverse of the sample covari-
ance matrix as the estimator of the precision matrix , because invert-
ing it may amplify the estimation error dramatically.

Plenty of estimators of precision matrices have been proposed.
In some of the work such as [3, 4, 5], additional properties of the
population covariance matrix are required, such as sparseness or low
rank (under a factor model assumption). These estimators perform
well when estimating a particular structured population precision
matrix.

We investigate a class of estimators of covariance matrices and
precision matrices that are based on linear shrinkage estimation as
well as weighted sampling. Linear shrinkage estimators are exten-
sively used to estimate covariance matrices [6, 7, 8] but are seldom
used to estimate precision matrices. The reason is that it is impos-
sible to obtain a closed form expression of the expectation of the
quadratic loss of the precision matrix estimator. To tackle this prob-
lem, we use high-dimensional asymptotics of quadratic loss func-
tion. Furthermore, weighted sampling is also a widely used tech-
nique in statistical sampling theory, e.g, nonparametric bootstrap [9].

A quadratic loss is used to quantify the estimation error. To
reflect the fact that the observation dimension is of the same order of
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magnitude as the number of samples, we employ high-dimensional
asymptotics where both the observation dimension and the number
of samples go to infinity. Our first main contribution is to obtain an
estimator of the precision matrix which is asymptotically as good as
the oracle estimator. The second main contribution is to reveal the
asymptotic optimality of uniform weighting.

The rest of the paper is organized as follows. Section II is de-
voted to introduce the structured estimators and quadratic loss func-
tions. Important theoretical results for covariance matrix and pre-
cision matrix estimation are provided in Section III. In Section IV,
optimal selection of calibration parameters is discussed. Section V
presents numerical results and Section VI concludes this paper.

2. PROBLEM FORMULATION

Let {y; € C™ X, be a collection of independent and identical dis-
tributed (i.i.d.) observations of a stochastic process with zero mean
and covariance matrix Ry € CM*XM  Oyr target is to find an es-
timator of the precision matrix R based on sample observations
{y:}L,. For notational convenience, we denote Yx = [y1, ..., Y]
the M x N observation matrix. In this paper, we study a precision
matrix estimator fh;} where R/ has the following structure

~ 1
Ry = NYNTNY{é + pmIn (1)

where Ty € D with D denoting the set of positive semidefinite
diagonal matrices is a diagonal weighting matrix with diagonal ele-
ments representing a set of nonnegative sample weights, I/ is the
shrinkage target, and pys is the nonnegative shrinkage coefficient.

Our approach relies on adding some structure to the estimation
problem, which can be effectively exploited to further improve the
bias-variance tradeoff of the model. The latter is achieved by sen-
sibly selecting the free parameters T and pas as we will show in
the sequel. Consider an example of Tnx = (1 — par)In where
0< pmw £ 1. RM is an unbiased estimator of Rys if pas = 0;
choosing a nonzero pys will decrease the variance of R s but intro-
duce some bias. In this particular case, we can adjust this tradeoff
by different choices of pas.

A quadratic loss function is used to quantify the estimation error.
Given a certain unknown matrix B, and its estimator B M, the
quadratic loss can be written as the normalized Frobenius norm of
the error matrix Bas — By

R 1 R
LBy, Bu) = HHB]W — BMH%‘

where ||B||r = +/tr[B¥B] is the Frobenius norm. We normal-
ize the Frobenius norm for asymptotic purpose so that £(Ins) = 1
regardless of the dimension; see [6].
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In our case, the estimation error matrix with respect to covari-
ance matrix and precision matrix are Ras — Ras and Ry — R}/,
respectively. The corresponding quadratic loss functions are

Lo

1 5 2

—||Rym — R 2

M|| M MHF 2
1 _ .

Lp= MHRI\/II - RIMIH% (3)

The oracle estimators are defined as estimators with structure
(1) which have the minimum loss functions (2) and (3). In oracle
estimators, we have to know the population matrix Rs in order to
obtain the estimators. Ideally, the free parameters (T, p%;) in the
oracle estimators are calibrated through the following optimization
problem with objective functions (2) and (3), respectively:

W T @
subjectto Tn € Dy py > 0.

Note that the optimal parameters can not be obtained in practice
since the objective functions (2) and (3) depend on the unknown
covariance matrix Rys. The naive approach is based on the plug-in
estimators of (2) and (3), which is given by replacing the unknown
covariance matrix Rys by the sample covariance matrix Rsem =
LYNY R, e,

ug—in _ 1 o -

LovETn — MHRSCM ~Ruml|7 (5
ug—in 1 D — D —

E'}I’ ® = MHRSCIM - RMlH%’- (6)

However, minimizing (5) and (6) yield trivial solutions Ty = In
and pps = 0, then R/ becomes the sample covariance matrix.

If an estimate of the covariance matrix is required and (2) is used
as the objective in problem (4), the following approach is employed
in [6] to obtain the optimal parameters: assume Tn = apInx and
RM = onRSCM + pamrIar which is a special case of structure (1),
expectation of L¢ (c.f.(2)) can be computed and minimized with
respect to aops and pas. The optimal solutions are denoted by
and pj;. Then consistent estimators of o}, and p3, (denoted by G s
and pas) are derived in the double limit where both M and N go to
infinity, hence the covariance matrix estimator is given by Ry =
amRsem + pyvln.

However, this method can not be applied for precision matrix
estimation because expectation of (3) cannot be obtained. We tackle
this problem by using asymptotics as an approximation: instead of
taking expectations, we first derive asymptotic equivalent of (3) in
the double limit that is deterministic; the asymptotic equivalent is not
observable and therefore we provide its consistent estimator, which
is also consistent with (3) in the double limit. The optimal param-
eters (T, p3;) in the precision matrix estimator can therefore be
approximately obtained by minimizing the consistent estimator of
(3). This estimation scheme will be illustrated in detail in Section
Iv.

In the following section, we provide two theorems describing
the asymptotic equivalents and consistent estimators for quantities
(2) and (3).

3. ASYMPTOTIC EQUIVALENTS AND CONSISTENT
ESTIMATORS

In this section we provide our theoretical findings, whose proofs are
included in a full version of this work [10]. In particular, Theorem
1 in [11] is instrumental in the proof. We first begin with technical
hypotheses and some further definitions.
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3.1. Assumptions and further definitions

The following set of assumptions will be maintained throughout the
paper.

(A1) Let the population covariance matrix R s be nonrandom
M x M positive definite matrices, with spectral norm being uni-
formly bounded in M.

(A2) The sample weight matrix T n is an NV x N diagonal matrix
with real nonnegative entries uniformly bounded in M.

(A3) Let X ;s be an M x N random matrix such that the entries
of X/ are i.i.d. complex Gaussian random variables with mean
zero, variance one. Then the observation matrix can be expressed as
Yn =Ry X!

We will consider the limiting regime that M, N — oo with
0 < liminfeas < limsupeys < oo where epr = M/N. In this
limiting regime, a < b denotes they are asymptotic equivalents, i.e.,
|a — b| — 0 almost surely.

Before proceeding to the main theorems in this paper, we intro-
duce some further definitions: we define Sar = car (ﬁtr[R M])Q,

i . . . 5 1 N !
and its generalized consistent estimator By = sz 2ien yall™
Moreover, we introduce

Y™ = %tr [(RIM (SIVIRI\/I + pIMII\/I)_l)2:| 7
M = %tr [(Tn(In + 6A{T]\4)_1)2} . 8)

where (8a7, dar) is the unique positive solution of the system of
equations [11]:

om = %tr [RAl(SA{R]W + pMIM)_l] ©)
SM = %tr [TN(IN + 51\/[TN)_1} .
Furthermore, we define matrices Rc, v and Rp, M as
_ 1
Reov = Ntr [TNn]RM + prvln (10)
Reyv = SuRar + pmIar. (11)

The above quantities will be used to describe the asymptotic de-
terministic equivalents and the consistent estimators, respectively.
3.2. Asymptotic equivalents of loss functions

The following theorem shows almost sure convergence for Lo and
Lp.

Theorem 1. Define the following quantities:

Lec

1 _ 1
2| R — Re w7 + Bu Ntf[T?v] (12)

Lp

1 -1 /-1 2
MHRNI - RP,MHF

- 2
Ym 1 = 2
—_ —tr[Ru (R . 1
T — it CM (Mtr[ v (Rp, ) ]) (13)

Under Assumptions (Al)-(A3), it follows that Lc =< Lo and
Lp =< Lp, i.e., the random quantities (2)-(3) tend to deterministic
quantities (12)-(13) in the double limit.

Theorem 1 provides asymptotic approximations of loss func-
tions in the double-limit regime. It enables us to analyze the con-
sistency of the structured estimators (1) with fixed parametrization,
i.e., when par, T n are determined.

IThis assumption can be generalized to X ; with distribution-free en-
tries.



3.3. Consistent estimators of loss functions

In the following, we provide consistent estimators of quadratic loss
functions, which can be effectively used as objective functions when
calibrating the parameters in covariance matrix and precision matrix
estimators. We begin with the following lemma which provides con-
sistent estimators of d5; and das, which will be used to derive the
consistent estimators of loss functions.

Lemma 1. [712] Under assumptions (A1)-(A3), a consistent estima-
tor of n1, denoted by )y, is given by the unique positive solution of
the following equation:

1 R -1
(5]MNU |:TN (IN + 5MTN> } =

1 1 1 -t
Ntr |:NYNTNYJI\{; (NYNTNY]I;II +pMIM) :| (14

Moreover, a consistent estimator of d v, denoted by Sy, is given
by:

2 1 ~ -1
v = Ntl’ [TN (IN +§JWTN) :| . (15)

Theorem 2. Define the following quantities:

Lo = L% 4y (16)

Lp=LR%" +yp (17

where correction terms of plug-in estimators (5) and (6) are given
by:

2
¢U>::jéitr[(1 "CAI)Piy'(§“4fii;"’figﬁw) +’fi;§“rix;]
2
—(2em — QCM)M r[Radu] — (e — C?w) (%tr[ﬁgclM])

Under Assumptions (Al)-(A3), it follows that Lo = Lo and
.Cp = Lp, i.e., the random observable quantities (16)-(17) tend to
the deterministic quantities (12)-(13) in the double limit.

Remark 1. It is required that cps < 1 in equation (17).

4. OPTIMAL SELECTION OF CALIBRATION
PARAMETERS

In this section and the following section, the subscripts M and N
will be omitted for clarity of presentation. The parameters T and p
in estimator (1) represent a set of degrees-of-freedom with respect
to which estimation performance can be improved. Ideally, we use
consistent estimators (12) and (13) to calibrate these parameters and
formulate the following set of problems:

L(T, p)
T e D+ p > 0.

minimize
(T,p) (18)
subject to
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In general, the set of problems (18) with objective functions (16)
and (17) are nonconvex. However, we can study the structure of op-
timal solutions asymptotically by replacing (16) and (17) with their
corresponding asymptotic equivalents (12) and (13). Now we focus
on the optimal solutions to the following set of problems:

minimize L(T, p)
(T.p) (19)
subjectto T € Dy p > 0.

Proposition 1. There exists a global optimal solution (T, p*) to
optimization problem (19) with objective function (12) and (13) in
the form of (a*1, p*).

Proposition 1 has revealed the asymptotic optimality of uniform
weighting. With Proposition 1, the number of variables of problem
(19) is reduced from N + 1 to 2. At this point, we can return to

problem (18) with variable x = [a, p]”. We start with the loss
function L¢; the expression (16) in terms of x is
Lo(x) =x"Qx —2p"x — fu (20)
where A
Q-=| I Rseml[3 - frtr[Rscwm]
tr[Rscm] 1

p=1[ LlRscullp -8 FtrRseu] ]

From the Cauchy—Schwarz inequality, Q is positive semidefi-
nite. Problem (18) becomes a quadratic program and can be effi-
ciently solved.

In particular, for the relevant case o = 1 — p, the optimal shrink-
age coefficient of problem (18) is given by

p* = min 1#, 1. (21)
a7 Rsem —I[[%

In [6], the authors minimized the expectation of the quadratic
loss function and obtained the shrinkage coefficient. Under the same
asymptotic setting M, N — oo, the optimal shrinkage coefficient is
estimated as:

p* = min g
LW Y
1\/11 ||ILSCM

L Reen 2
MNL' scmllr 1. @
artrRscm] 1|7

If ﬁtr[R] = 1 (which can be generalized to arbitrary R with a gen-
eral shrinkage target Ry), it can be seen that (21) is asymptotically
equivalent to (22).

We now consider the loss function £p; the expression (17) in

terms of x is

Lp(a,p)=(1-— c)2$tr [RS_CZM} —c(l—¢) (%tr [RS_CIM])2

N -2
+ %tr |:(OZRSCM + 1) }

1 11
—2(1— c)—tr [p RSCM}

+ (1 — 0)5(01 p)—tr |: -1 (aRSCM —|—pI) 1:|
(23)

where

2 1 N N —1
0(a,p) =a— azﬁtr {RSCM (aRSCM + pI) } .



Note that the objective function (23) is nonconvex in general.
Exhaustive search can be used for calibrating (c, p) in the precision
matrix estimator since there are only two variables. A convex opti-
mization based algorithm which is more time efficient is proposed
in the in a full version of this work [10], but skipped here for space
reasons. With these methods, we can obtain a precision matrix es-
timator which is asymptotically as good as the oracle estimator in
Section II.

5. MONTE CARLO SIMULATIONS

In the simulation, we show our advantage in estimating the precision
matrix with finite sample size settings. We directly calibrate the pa-
rameters (cv, p) in the precision matrix estimator R, = aRscm + pI
by optimizing problem (18) with objective function (23). Our es-
timator is named Quadra-Precision. Besides, the following estima-
tion methods are investigated, in which the precision matrix esti-
mators are obtained by estimating the covariance matrix and taking
the inverse. These estimators are listed as: (1) LW [6]: Riw =
(1—p)Rscm +pﬁtr[RSCM]I where p is given in (22); (2) SCM: the
conventional sample covariance matrix Rscum; 3) Equally weighted
SCM with the shrinkage target: i.e., O.Sf{SCM +0.51. (4) Oracle: We
assume covariance matrix R is known to us and («, p) minimizes
(23). The performance of Oracle is the lower bound.

We let R be the covariance matrix of a Gaussian autoregressive
process with entries [R];; = 0.9/"77. The columns of Y are gener-
ated from a Gaussian process. The simulation is repeated 100 times
and the average quadratic loss is plotted here.

In Fig.1, we omit quadratic loss of sample covariance matrix
because it is over 1000. It can be seen that the performance of
equally weighted SCM with the shrinkage target is the worst, since
the shrinkage coefficient is fixed for each realization. The perfor-
mance of Quadra-Precision is close to that of Oracle. It outperforms
the LW estimator, which coincides with the intuition that it is better
to estimate a precision matrix directly than estimating the covariance
matrix and taking the inverse. As the number of samples increases,
quadratic losses of LW estimator and Quadra-Precision estimator be-
come closer to that of Oracle, since the sample covariance matrix
behaves better with larger number of samples.

6. CONCLUSIONS

In this paper we have studied consistency and calibration of estima-
tors of covariance matrices and precision matrices that are based on
linear shrinkage as well as weighted sampling. We have employed
high-dimensional asymptotics to reflect the fact that the observation
dimension is of the same order of magnitude as the number of sam-
ples. We are able to effectively use the proposed structure so as
to further reduce the estimation error, as quantified by the matrix
quadratic loss. This means improving the bias-variance tradeoff for
covariance matrix estimation, especially the estimation of the preci-
sion matrix. Moreover, the asymptotic optimality of uniform weight-
ing has been revealed by asymptotic deterministic equivalents of the
loss functions. Monte-Carlo simulations have shown our advantage
in estimating the precision matrix in finite sample size settings.
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Fig. 1. Quadratic loss w.r.t. precision matrix. Dimension M = 40,
number of samples /N varies from 60 to 90.
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