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ABSTRACT

The problem of source enumeration in array processing is investi-
gated. In an information theoretic criterion framework, we use in
addition to the probability density function of observations, the prob-
ability density function of the sample eigenvalues obtained from the
sample covariance matrix of the observations. Although the latter
adds information to the criterion it is widely ignored by most tra-
ditional approaches. Simulations show that the significant perfor-
mance gain offered by the proposed criterion in terms of correctly
detecting the number of sources in some difficult situations, such as
small sample sizes, low signal-to-noise power ratio, close spacing
and high correlation between sources.

Index Terms— Bayesian information criterion (BIC), informa-
tion theoretic criteria, minimum description length (MDL), model
order selection, source enumeration.

1. INTRODUCTION

Enumerating the sources impinging on an array of sensors is one
of the most fundamental problems in array processing. Because of
computational and modeling simplicity, most classical approaches
are derived using the eigenvalues, which is calculated from the sam-
ple covariance matrix of the observed data. One category of clas-
sical approaches is based on hypothesis testing, e.g., the sphericity
test [1] and the bootstrap-based test [2], [3]; the other is based on
information theoretic criteria, including Akaike’s information crite-
rion (AIC) and Bayesian information criterion (BIC)(or Rissanen’s
minimum description length criterion (MDL)) [4].

The information theoretic criteria choose a model that fits the
data mostly from a family of possible models, by minimizing the
Kullback-Leibler divergence between all competing models and the
true one. The formulation consists of two terms, namely, the log-
likelihood function and the penalty function. The log-likelihood
function is constructed using the probability density function (pdf)
of observations. From the Bayesian point of view [5], the pdf of the
model parameters are also useful information, which is unfortunately
ignored in most cases. In array processing, the model parameters in-
clude the eigenvalues, the eigenvectors and the noise variance.

In [6], the log-likelihood function is constructed using the joint
pdf of sample eigenvalues, which is derived based on the complex
Wishart distribution of the sample covariance matrix of observa-
tions. Correspondingly, the penalty function is changed, since the
eigenvectors are excluded from the parameter space. The proposed
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approach outperforms the traditional MDL. In [7], a similar criterion
is employed using a different pdf of sample eigenvalues [8].

In this paper, we employ the asymptotic pdf of sample eigenval-
ues, which is presented in [8]. The log-likelihood function is con-
structed by superimposing the pdf of sample eigenvalues on the pdf
of observations. The extra information provided by the pdf of sample
eigenvalues upgrades the performance of the proposed approach.

The remainder of the paper is organized as follows. The array
signal model is introduced briefly in Section 2, followed by a short
review of the BIC in Section 3. The proposed criterion is presented
in Section 4. Simulation results are given in Section 5, before con-
clusions are drawn in Section 6.

2. ARRAY SIGNALMODEL

Consider q narrow-band far-field sources impinging on an array with
p sensors (p > q). The received N snapshots of independent and
identically distributed (i.i.d.) circular complex data could be written
as

xi = Asi +ni, i = 1, . . . , N (1)

where A is the p × q array steering matrix, si is the q-dimensional
source signal with zero mean, and ni is the source-independent i.i.d.
noise with zero mean and covariance σ2

I . The population covari-
ance matrix of the observed data is given by

R = E[xix
H
i ] = ARsA

H + σ
2
I (2)

where Rs = E[sis
H
i ] is the source covariance, and (·)H is the Her-

mitian transpose. The population eigenvalues of R are given by

λ1 ≥ · · · ≥ λq > λq+1 = · · · = λp = σ
2 (3)

where the first q eigenvalues are contributed by the sources and the
noise, which are called the signal eigenvalues. The last p− q eigen-
values are contributed by only the noise, which are called the noise
eigenvalues. In practice, the population covariance matrix is esti-
mated using only a finite number of snapshots, namely, the sample
covariance matrix

R̂ =
1

N

N∑
i=1

xix
H
i =

p∑
i=1

li cic
H
i (4)

with corresponding sample eigenvectors c1, c2, · · · , cp and eigen-
values

l1 > · · · > lq > lq+1 > · · · > lp. (5)

In order to enumerate sources, most existing approaches exploit the
structures of the sample eigenvalues in (5).

3361978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



3. BAYESIAN INFORMATION CRITERION

In [9], Schwartz approached the model order selection problem from
the Bayesian point of view. He assumed each model can be assigned
to a prior probability, and proposed to select the model that yields
the maximum posterior probability. The rule is called the Bayesian
information criterion (BIC), which can be formulated as follows:

q̂ = argmin
k

{
BIC(k) = −2logf(X|Θ̂(k)) + nklogN

}
(6)

given observations X = {x1, · · · ,xN} and corresponding un-
known parameter vector Θ(k) with the possible size k. nk denotes
the number of free adjustable parameters. A brief review for the
derivation of the BIC can be found in [5]. Additionally, the mini-
mum description length (MDL) criterion proposed by Rissanen in
[10], yields the same criterion as the BIC in (6). In the array pro-
cessing community, the MDL is the preferred name. Herein, we will
use the principle of the BIC to derive the new approach.

In [4], the criterion in (6) is used to detect the number of sources.
Since the observations X are regarded as i.i.d. circular complex
Gaussian random vectors with zero mean, their joint pdf is given
by

f(X|Θ(k)) =
N∏
i=1

1

πp det[R(k)]
exp

{
−x

H
i [R(k)]−1

xi

}
(7)

with the population covariance matrix

R
(k) =

k∑
i=1

(λi − σ
2)viv

H
i + σ

2
I (8)

and the parameter vector of the model

Θ
(k) = (λ1, · · · , λk, σ

2
,v

T
1 , · · · ,vT

k )
T (9)

where λ1, · · · , λk and v1, · · · ,vk are the eigenvalues and eigenvec-
tors of R(k), respectively. Note that k ∈ {0, 1, · · · , p − 1} ranges
over the set of all possible number of sources. The ML estimate [8]
can be derived as

Θ̂
(k) = (l1, · · · , lk, 1

p− k

p∑
i=k+1

li, c
T
1 , · · · , cTk )T . (10)

Then, we can formulate the BIC metric in (6) as follows:

BIC(k) = −2N(p− k)log

(∏p
i=k+1 l

1/(p−k)
i

1
p−k

∑p
i=k+1 li

)

+ [k(2p− k) + 1]logN

(11)

with nk = k(2p− k) + 1 [4]. The number of sources is determined
by

q̂ = argmin
k

BIC(k), k = 0, . . . , p− 1. (12)

4. ENHANCED BAYESIAN INFORMATION CRITERION

In [5], it is shown that the criterion in (6) is simplified from the
original formulation (see Eq. (84) in [5])

BIC(k) = −2[logf(X|Θ̂(k)) + logf(Θ̂(k))] + nklogN (13)

based on two assumptions on f(Θ(k)), that is, f(Θ(k)) is flat around
Θ̂

(k), and independent of the sample size N . If these two assump-
tions, especially the second, are not fulfilled, the term logf(Θ̂(k))
can not be removed from (13). Hence, it is implied that the pdf
logf(Θ̂(k)) carries useful information for the BIC. In array process-
ing, f(Θ̂(k)) is the joint pdf of sample eigenvalues and eigenvectors.
It is well known that the pdf of eigenvectors is too cumbersome for
general use, which sometimes renders the criterion in (13) unfeasi-
ble. Here, we use some trick to exclude the pdf of eigenvectors.

By ignoring the constant, the likelihood function f(X|Θ̂(k)) in
(11) can be reformulated as

f(X|Θ̂(k)) =

⎡
⎣ k∏

i=1

li ·
(

1

p− k

p∑
i=k+1

li

)p−k
⎤
⎦

−N

(14)

due to det(R̂) =
∏k

i=1 li ·
∏p

i=k+1 li. It is apparent that f(X|Θ̂(k))
depends on only the parameters l1, l2, · · · , lp, i.e.,

f(X|Θ̂(k)) = f(X|l1, l2, · · · , lp) (15)

where X vanishes in (14). Following this result and (13), the pro-
posed enhanced BIC metric can be formulated as

BICe(k) = −2[logf(X|Θ̂(k)) + logf(l1, · · · , lp)] + nklogN
(16)

where f(X|Θ̂(k)) and nk are given in (11). In what follows, the
joint pdf f(l1, · · · , lp) is given in two different ways.

The asymptotic distributions of sample eigenvalues are given in
[8] and [11]. Assuming that the signal sample eigenvalues are i.i.d.,
their joint pdf is given by

f(l1, · · · , lk|λ1, · · · , λk) =
k∏

i=1

f(li|λi)

=

k∏
i=1

√
N√

2πλi

exp

[
−N(li − λi)

2

2λ2
i

]
.

(17)

The joint pdf of the noise sample eigenvalues can be expressed as

f(lk+1, · · · , lp|σ2) =

p∏
i=k+1

p∏
j=i+1

[√
N

(
li − lj

σ2

)]2

· 1

Γ(1) · · ·Γ(p− k)

·
p∏

i=k+1

√
N√

2πσ2
exp

[
−N(li − σ2)2

2(σ2)2

]
.

(18)

As we know, the population eigenvalues λ1, · · · , λk and the
noise variance σ2 are unknown. In order to exclude them from
(17) and (18), respectively, the most common way is to estimate
them based on the sample eigenvalues l1, · · · , lp, e.g., using the
maximum likelihood estimator. However, we have only one copy
of l1, · · · , lp so that it is very hard to obtain an accurate estima-
tion result. Moreover, the multi-dimensional search is quite time-
consuming. An alternative is using the estimates in (10), namely,
λ̂i = li, σ̂

2 = 1
p−k

∑p
i=k+1 li. By substituting them in (17) and

(18), the marginal pdf

f(l1, · · · , lp) = f(l1, · · · , lk|λ̂1, · · · , λ̂p) · f(lk+1, · · · , lp|σ̂2)
(19)
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can be obtained.
Instead of using the estimates λ̂i and σ̂2, we resort to the

Bayesian approach. A prior density is assigned to each of the un-
known parameters, namely, λ1, · · · , λk, σ

2. The Jeffreys prior,
which is a non-informative (objective) prior density on parameter
space, is assigned to the population eigenvalues λi’s. The derivation
of f(λi) is given in the appendix. Since it is not easy to obtain the
Jeffreys prior for the noise variance σ2 from (18), the uniform prior
is given, for simplicity. After that, the parameters λ1, · · · , λk, σ

2 are
integrated out to yield the marginal pdf of the sample eigenvalues.
Consequently, we can get

f(l1, · · · , lp) = f(l1, · · · , lk) · f(lk+1, · · · , lp)

=

k∏
i=1

∫ αi

0

f(li|λi)f(λi)dλi

· 1

l1 − lp

∫ l1

lp

f(lk+1, · · · , lp|σ2)dσ2

(20)

where 0 ≤ λi ≤ αi, α1 = 2l1, αi = li−1, i > 1 and lp ≤ σ2 ≤ l1
are assumed. f(λi) is given in (23).

By constructing f(l1, · · · , lp) in (19) or (20) and using (16), the
number of sources is determined by

q̂ = argmin
k

BICe(k), k = 0, . . . , p− 1. (21)

Apparently, the performance of the enhanced BIC can be improved if
more accurate estimates are used in (19) and much tighter intervals
are used for the integration in (20). It is worth mentioning that N
is relatively larger than p, which is the implicit assumption of the
proposed criterion, since the asymptotic distributions are used.

Note that the penalty function of the traditional BIC is too large
in the case of low SNR or small sample size so that the model order
is underestimated. However, the penalty function of the enhanced
BIC is reduced adaptively according to the probabilities of sample
eigenvalues, if the log-likelihood function of sample eigenvalues is
treated as a part of the penalty function pk, i.e.,

pk = −2logf(l1, · · · , lp) + nklogN. (22)

This could be an alternative explanation for why the enhanced BIC
outperforms the traditional one.

5. SIMULATIONS

A uniform linear array with inter-sensors spacing of half the wave-
length was employed. Simulation results were obtained based on
the case of Gaussian sources contaminated by white Gaussian noise,
and 1000 Monte Carlo trials. For notations, the numbers of sam-
ples, sensors and sources are denoted by N , p and q, respectively.
The probability of correctly detecting q is denoted by Pd. “DoA”
is short for the direction of arrival of a source. “SNR” is short for
the signal-to-noise ratio. The traditional BIC is denoted by “BIC”.
The proposed enhanced BIC using (19) and (20) are denoted by a
“BICe1” and “BICe2”, respectively. In the following, these two ap-
proaches are compared in different experimental settings:

• Setting 1: Number of samples (see Fig. 1). N ∈ [20, 100],
p = 10, q = 3, DoAs = 20◦, 25◦, 30◦, SNR = 7 dB.

• Setting 2: SNR (see Fig. 2). N = 50, p = 10, q = 3, DoAs
= 20◦, 25◦, 30◦, SNR ∈ [0, 10] dB.

• Setting 3: Angular resolution (see Fig. 3). N = 40, p = 10,
q = 2, DoA1 = 20◦, DoA2 ∈ [20◦, 36◦], SNR = -4 dB.

• Setting 4: Correlated sources (see Fig. 4). N = 50, p = 6,
q = 2, DoAs = 20◦, 30◦, SNR = 3 dB, ρ ∈ [0.6, 0.95].

It can be seen from Figs.1–4 that two proposed approaches
have quite similar performance, which outperform the traditional
approach “BIC” in all four settings. In our case, the pdf of sample
eigenvalues enhances the accuracy of the Kullback-Leibler diver-
gence, which leads to substantial performance improvement of two
proposed approaches, especially in some harsh conditions.
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Fig. 1. Detection rate Pd vs. number of samples N .
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Fig. 2. Detection rate Pd vs. SNR.

6. CONCLUSION

A new information theoretic criterion has been proposed for source
enumeration. For constructing the Kullback-Leibler divergence, we
involved the pdf of sample eigenvalues, except for the pdf of obser-
vations. The pdf of sample eigenvalues is an essential supplement for
the information theoretic criterion, especially in the aforementioned
difficult situations when the pdf of observations fails to provide suf-
ficient information. This statement is validated by the simulation
results.
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Fig. 3. Detection rate Pd vs. DoA of the second source θ.
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Fig. 4. Detection rate Pd vs. correlation coefficient of two sources
ρ.

7. APPENDIX

In this appendix, we derive the Jeffreys prior density for the popula-
tion eigenvalue λi, that is,

f(λi) =
√

I(λi). (23)

From (17), we can get the pdf

f(li|λi) =

√
N√

2πλi

exp

[
−N(li − λi)

2

2λ2
i

]

= De
−ax2

by setting x = li − λi, a = N
2λ2

i

> 0 and D =
√

N√
2πλi

, and its

second derivative

∂2 log f(li|λi)

∂λ2
i

= −3Nl2i
λ4
i

+
2Nli

λ3
i

+
1

λ2
i

= −3N

λ4
i

(li − λi)
2 − 4N

λ3
i

(li − λi) +
1−N

λ2
i

= Ax
2 +Bx+ C

by setting x = li−λi, A = − 3N
λ4

i

,B = − 4N
λ3

i

and C = 1−N
λ2

i

. Then

we can derive the Fisher information

I(λi) =

∫ +∞

−∞
f(li|λi)

∂2 log f(li|λi)

∂λ2
i

dli

=

∫ +∞

−∞
(Ax

2 +Bx+ C) ·De
−ax2

dx

=
DA

2

√
π

a3
+DC

√
π

a

(24)

by using the following integration formulas∫ +∞

−∞
x
2
e
−ax2

dx =
1

4

√
π

a3
erf(x

√
a)− x

2a
e
−ax2 |+∞

−∞=

√
π

4a3∫ +∞

−∞
xe

−ax2

dx = − 1

2a
e
−ax2 |+∞

−∞= 0

∫ +∞

−∞
e
−ax2

dx =
1

2

√
π

a
erf(x

√
a) |+∞

−∞=

√
π

a

with the error function

erf(x) =
2√
π

∫ x

0

e
−t2

dt.
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