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Université de Technologie de Troyes, France

ABSTRACT

Granger causality considers the question of whether two time
series exert causal influences on each other. Causality test-
ing usually relies on prediction, i.e., if the prediction error of
the first time series is reduced by taking measurements from
the second one into account, then the latter is said to have a
causal influence on the former. In this paper, a nonparametric
framework based on functional estimation is proposed. Non-
linear prediction is performed via the Bayesian paradigm, us-
ing Gaussian processes. Some experiments illustrate the effi-
ciency of the approach.

Index Terms— Granger causality, functional estimation,
Gaussian process, reproducing kernel

1. INTRODUCTION

Granger causality is an answer to the question of assessing
possible influences between times series, and consists of de-
termining whether and how two time series have influences
on each other. This principle has been developed extensively
in econometry. See, e.g., [1, 2, 3, 4] to cite some but a very
few. It has also been used during the last decade within var-
ious fields as diverse as climatology [5] or neuroscience [6].
Surprisingly, it has only been rarely considered in the signal
processing community [7, 8].

The notion of Granger causality relies on prediction and
basically states that a signal xt is a cause of a signal yt if the
prediction of yt based on its past is improved when using the
past of xt also. A formal definition states that xt does not
cause yt if and only if

p(yt|y
t−1) = p(yt|x

t−1, yt−1) (1)

where xt denotes the whole past up to time instant t of the sig-
nal xt. When other signals than xt and yt are observed, they
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must be taken into account in the definition, and the above
Markov condition must be considered conditionally to these
other observations. The conditional independence condition
then writes p(yt|yt−1, xt−1, wt−1) = p(yt|yt−1, wt−1). In
the sequel we will consider that xt and yt are scalar signals,
whereas wt can be a multivariate signal. Testing for Granger
causality was performed in several ways in the literature. For
example, dependence measures were considered in [9, 10, 11]
and others. Parametric modeling was used jointly with a sta-
tistical testing approach in [2, 3, 7, 8]. The linear-Gaussian
case, which leads to detectors based on asymptotic variances
of prediction errors, was usually considered within this frame-
work. Some nonlinear models have also been considered [6].

In this paper, we propose a new nonparametric frame-
work that relies on functional estimation and explicit pre-
diction. As in [14], our approach exploits some concepts of
Machine Learning associated with reproducing kernel Hilbert
space theory. It however differs in the way how inference is
handled. Here, forecasting is treated as a nonlinear regres-
sion problem using the Bayesian paradigmwith Gaussian pro-
cesses as priors [12]. Thus the solution can be then viewed
as a time series prediction problem in the reproducing ker-
nel Hilbert space defined by the covariance function used to
model the prior. This has been recognized recently as an ef-
fective solution to nonlinear system identification problems,
see e.g. [13] and references therein. This paper is organized
as follows. The concept of Granger causality is briefly intro-
duced in Section 2. Causality testing based on the framework
of Gaussian processes is presented in Section 3. Section 4
reports some experiments. Finally, Section 5 sums up the re-
sults and describes the future works.

2. GRANGER CAUSALITY

Consider two scalar time series xt and yt, and the question
of whether or not xt (resp., yt) causes yt (resp., xt). Let wt

be a third time series, possibly multidimensional, that models
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some extra measurements and will be referred to as the side
information. Two structural models are of interest:

Model 1:

xt = f1
x(x

t−1, wt−1) + ε1x,t (2)

yt = f1
y (y

t−1, wt−1) + ε1y,t (3)

Model 2:

xt = f2
x(x

t−1, yt−1, wt−1) + ε2x,t (4)

yt = f2
y (x

t−1, yt−1, wt−1) + ε2y,t (5)

The dynamical noises ε
(1,2)
x,t and ε

(1,2)
y,t are i.i.d. and, for a

given model, not necessarily independent of each other. How-
ever, as developed in [2, 4], dependence between the dynam-
ical noises is related to the notion of instantaneous causality.
This topic is beyond the scope of this paper, and we further
assume that the noises are independent from each other.

Clearly, the dynamical noises represent the innovation
processes under each model. For example, ε1x,t is the error
obtained when optimally predicting xt from its past and the
past of wt. Likewise, ε2x,t is the prediction error of xt from
its past, and the past of yt and wt. Adopting Granger point
of view on causality leads to the conclusion that the series y
causes the series x if Var[ε2x,t] < Var[ε1x,t], [1]. The aim is
thus to derive the best predictor for both models and compare
the power of the residuals. Parametric tests based on linear
predictors have been extensively studied in the literature. Sur-
prisingly, there are relatively few works considering possibly
nonlinear relationships between time series. In this paper, we
present a nonlinear framework based on Gaussian processes.
See [12] for an overview. The specification of priors allows
us to automatically reduce risks of overfitting, on the contrary
of [14] that uses manual selection of the largest eigenvalues
of some Gram matrices involved in the prediction processes.

3. TESTING GRANGER CAUSALITY WITH
GAUSSIAN PROCESSES

Suppose we are given a training set1

D = {(xi,yi), (xi, yi)}i=1,...,ND
(6)

where xi and yi denote the input vectors defined by

xi = [xi−1, ..., xi−Mx+1]
�

yi = [yi−1, . . . , yi−My+1]
�

(7)

and (xi, yi) the corresponding desired outputs. The column
vector inputs xi and yi, for all ND cases, are aggregated in
the design matrices X and Y . The targets xi and yi are col-
lected in the vectors fx and fy , and denoted by fx,i and fy,i for

1Side information wt in eq. (2) to (5) is omitted for the sake of clarity.

notational simplicity – See equation (9). We are interested in
making inferences about the relationships (2)-(5), that is, the
conditional distribution of the desired outputs given the input
vectors. Suppose we are also given two matrices X∗ and Y ∗

of input vectors of the following test set

T = {(x∗
i ,y

∗
i )}i=1,...,NT

(8)

that have been aggregated.

3.1. Predicting with Gaussian processes

Functions f1
x and f1

y in Model 1 are assumed unknown. Both
need to be identified in order to compute estimates (f∗

x,i, f
∗
y,i)

at each test location (x∗
i ,y

∗
i ), that is,

f∗
x,i � f1

x(x
∗
i )

f∗
y,i � f1

y (y
∗
i )

and
fx,i = f1

x(xi) + ε1x,i
fy,i = f1

y (yi) + ε1y,i.
(9)

The function values f∗
x,i and f∗

y,i, for all i = 1, . . . , NT , are
collected in the vectors f∗x and f∗y . Using the Gaussian process
regression models introduced in [12], inference is performed
on (f∗x , f

∗
y ) based on the Bayesian framework and priors on

functions f1
x and f1

y . The latter are considered as Gaussian
randomfields, and are completely characterized by their mean
functions and their covariance functions. For the sake of sim-
plicity, we will take the mean functions to be zero. The co-
variance functions of f1

x and f1
y will be denoted by k1x(x,x

′)
and k1y(y,y

′), respectively. They depend on parameters that
influence their shapes, and thus determine the sample path
properties of the random fields f1

x and f1
y .

In order to specify the distribution of (f∗
x,i, f

∗
y,i) condi-

tionally to the input vectors of the training and test sets, we
need to invoke the joint statistics of f1

x(xi), f1
y (yi), f1

x(x
∗
i )

and f1
y (y

∗
i ). We shall assume that the two random fields

are independent, which implies that their covariance function
E[f1

x(xi)f
1
y (yj)] is zero for all i, j. LetK1

xx be theND×ND

matrix whose (i, j)-th entry is k1x(xi,xj). Let us denote by
K1

yy the ND ×ND matrix whose (i, j)-th entry is k1y(yi,yj).
Similarly, we introduce the following ND ×NT matrices

[K1
xx∗ ]ij = k1x(xi,x

∗
j ) = [K1

x∗x]ji

[K1
yy∗ ]ij = k1y(yi,y

∗
j ) = [K1

y∗y]ji

Finally, let K1
x∗x∗ and K1

y∗y∗ be the matrices with (i, j)-th
entries k1x(x

∗
i ,x

∗
j ) and k1y(x

∗
i ,x

∗
j ), respectively.

The noises ε1x and ε1y are assumed to be Gaussian, i.i.d.,
and independent of each other. Let σ2

x and σ2
y be their vari-

ance. Then we may write the joint distribution of the target
values and predicted values conditionally to the regressors as

P1(fx, fy, f
∗
x , f

∗
y |X,Y,X∗, Y ∗) = N (0,Σ1)

where Σ1 is the covariance matrix given by

Σ1 =

⎛
⎜⎜⎝

K1
xx + σ2

xI 0 K1
xx∗ 0

0 K1
yy + σ2

yI 0 K1
yy∗

K1
x∗x 0 K1

x∗x∗ 0
0 K1

y∗y 0 K1
y∗y∗

⎞
⎟⎟⎠
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I is the identity matrix of appropriate dimension, andN (0,Σ)
stands for the Gaussian distribution with mean vector 0 and
covariance matrix Σ.

Predictive equations can then be derived. For Model 1,
the posterior distribution P1(f

∗
x |X

∗, X, fx) is given by

P1(f
∗
x |X

∗, X, fx) = N
(
K1

x∗x(K
1
xx + σ2

xI)
−1fx,

K1
x∗x∗ −K1

x∗x(K
1
xx + σ2

xI)
−1K1

xx∗

)
and the posterior distribution P1(f

∗
y |Y

∗, Y, fy) is

P1(f
∗
y |Y

∗, Y, fy) = N
(
K1

y∗y(K
1
yy + σ2

yI)
−1fy,

K1
y∗y∗ −K1

y∗y(K
1
yy + σ2

yI)
−1K1

yy∗

)
Model 2 is a direct extension of the previous case with

extended regression variables, as we consider now

f∗
x,i � f2

x(x
∗
i ,y

∗
i )

f∗
y,i � f2

y (x
∗
i ,y

∗
i )

and
fx,i = f2

x(xi,yi) + ε2x,i
fy,i = f2

y (xi,yi) + ε2y,i.

Let σ2
x and σ2

y be the variances of ε2x and ε2y, which are as-
sumed to be Gaussian, i.i.d., and independent of each other.
The joint distribution of the target values and predicted values
conditionally to the regressors has the following form

P2(fx, fy, f
∗
x , f

∗
y |X,Y,X∗, Y ∗) = N (0,Σ2)

with Σ2 the covariance matrix defined by

Σ2 =

⎛
⎜⎜⎝

K2
zz + σ2

xI 0 K2
zz∗ 0

0 K2
zz + σ2

yI 0 K2
zz∗

K2
z∗z 0 K2

z∗z∗ 0
0 K2

z∗z 0 K2
z∗z∗

⎞
⎟⎟⎠

where

[K2
zz]ij = k2xy((xi,yi), (xj ,yj))

[K2
zz∗ ]ij = k2xy((xi,yi), (x

∗
j ,y

∗
j )) = [K2

z∗z]ji

Posterior distributions of interest P2(f
∗
x |X

∗, X, Y ∗, Y, fx)
and P2(f

∗
y |X

∗, X, Y ∗, Y, fy) are Gaussian with mean and co-
variance functions defined as for Model 1, substituting Gram
matrices K1

x(∗)x(∗) and K1
y(∗)y(∗) by K2

z(∗)z(∗) .

3.2. Evidences and measures of causality

A multitude of possible covariance functions, also called ker-
nels, exists. A classic example of kernels is the radially Gaus-
sian kernel k(z, z′) = exp

(
−‖z− z′‖2/β

)
, where β is the

bandwidth. These covariance functions typically have a num-
ber of hyperparameters which must be adapted. A possible
approach is to maximize the marginal likelihood, that is, the
likelihood marginalized over the function values, with respect
to the hyperparameters θ of the model. See [12, Chapter 5]
for details. The marginal likelihood, also called the evidence
of the model, can be used to test Granger causality as follows.

Consider the causality relationship x → y. We propose
the following statistic dx→y that compares the log-evidences
of Models 1 and 2

dx→y = max
θ2

logP2(fy |X,Y )−max
θ1

logP1(fy|Y ) (10)

where

logP2(fy |X,Y ) =−
1

2
f�y (K2

zz + σ2
yI)

−1fy

−
1

2
log

∣∣K2
zz + σ2

yI| −
ND

2
log 2π

logP1(fy|Y ) =−
1

2
f�y (K1

yy + σ2
yI)

−1fy

−
1

2
log

∣∣K1
yy + σ2

yI| −
ND

2
log 2π

If using a radially Gaussian covariance function for both
models, the parameters are θ1 = (β1, σ

2
y) and θ2 = (β2, σ

2
y),

where βi is the kernel bandwidth for Model i. As a conclu-
sion, we infer that x causes y if dx→y > 0 because the evi-
dence of Model 2 is then larger than the evidence of Model 1.
Causality y → x can be tested similarly by using the statistic
dy→x, defined as above by exchanging the role of y’s and x’s.

4. ILLUSTRATIONS

4.1. A bivariate example

We consider the coupling of Glass-Mackey like models. The
equations are given in discrete time. The coefficients have
been chosen to insure stability of the system. Note that in-
creasing the noise variance may cause the system to become
unstable. The coupled models are defined by

xt = xt−1 − 0.4

(
xt−1 −

2xt−4

1 + x10
t−4

)
yt−5 + 0.3yt−3 + εx,t

yt = 0.6yt−1 +
0.8yt−2

1 + y10t−2

+ αxt−2 + εy,t

where εx,t and εy,t are i.i.d. zero-mean Gaussian noises of
variance 10−2. It clearly appears that according to Granger’s
definition of causality, x is caused by y, and y is caused by x if
α > 0. A training set and a test set of cardinalities ND = 500
and NT = 524 were used. The values of α were succes-
sively set to 0, 0.01, 0.1 and 0.2. The lengths Mx,y of input
vectors were set to 6. The statistics dx→y and dy→x are rep-
resented in Fig. 1 (left). This experiment clearly confirms
the expected results. In particular, as soon as α takes suffi-
ciently large values, the proposed approach correctly detects
the coupling between time series xt and yt.

4.2. A multivariate example

As previously mentioned, side information must be taken into
account when possible to prevent unsound conclusions. It can
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Fig. 1. Left: Statistics dx→y and dy→x as a function of the
coupling strength (bivariate example). Right: Statistics dx→z

and dx→z|y for 20 independent realizations (multivariate ex-
ample)

be handled within our framework by expanding the input vec-
tors in the learning and test sets accordingly. To illustrate this
point, we apply our method to the chain x → y → z sug-
gested in [14] and defined by

xt = 1− ax2
t−1 + εx,t

yt = 0.8(1− ay2t−1) + 0.2(1− ax2
t−1) + εy,t

zt = 0.8(1− az2t−1) + 0.2(1− ay2t−1) + εz,t

with a = 1.8and where εx,y,z,t are i.i.d. zero-mean Gaussian
noises of variance 10−4. The lengths Mx,y,z of input vectors
were set to 2. The cardinality of the training and test sets was
fixed to ND = 500 and NT = 524. The values of statistics
dx→z|y and dx→z are plotted in Fig. 1 (right) for 20 indepen-
dent realizations. The bivariate statistic dx→z which does not
take the side information (here contained in the time series y)
into consideration, indicates that x causes z. However, when
incorporating this side information, the conditional statistic
dx→z|y indicates that x does not cause z conditionally to y.
This result is in accordance with the chain x → y → z.

5. DISCUSSION

This paper presents an original contribution on the use of
Gaussian process framework for Granger causality testing.
We proposed to use the evidence of the models to design a
test of causality. We illustrated the usefulness of our approach
with some simulations.

Perspectives of our work include the statistical analysis
of our causality test and a full Bayesian implementation.
For practical use, in neuroscience in particular, the design
of online procedures appears as an interesting opportunity.
This however requires some sophisticated sparsification tech-
niques to limit the increase in the dimensions of Gram ma-
trices, as data is recorded. The approach developed in [13]
should offer a natural solution to solve this problem. Further-
more, within this context, instantaneous causality is an impor-
tant concept in practice that has to be handled theoretically.
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