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ABSTRACT

In this paper, we propose a computationally simple algo-

rithm for the estimation of the frequencies of a random phase

two-dimensional (2-D) complex exponential in additive noise

by extending the 1-D estimator developed by Aboutanios and

Mulgrew. The procedure of the algorithm is based on a two-

stage scheme consisting of a coarse estimator followed by a

fine search stage. The separability of the problem implies

that the estimator can be applied in each direction. Theo-

retical analysis shows, however, that the performance of the

algorithm converges to the minimum point of the asymptotic

variance after two iterations only if the estimation is applied

jointly in the two dimensions. As in the 1-D case, this vari-

ance is extremely close to the 2-D Cramer-Rao Lower Bound.

The simulation results are presented to verify the analysis.

Index Terms— Digital signal processing, frequency esti-

mation, two-dimensional exponential, interpolation algorithm

1. INTRODUCTION

Frequency estimation, including the two-dimensional (2-D)

case, is an important research problem in a wide range of ap-

plications, such as the processing of nuclear magnetic res-

onance (NMR) spectroscopy, radar imaging and biomedical

instrumentations. In this paper, the estimation of frequencies

of a single 2-D complex exponential in noise is addressed.

The signal model can be written as:

x(m,n) = Aejφ+j2π(mf1+nf2) + w(m,n) (1)

where 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1. For our

purposes, the signal amplitude A and random initial phase φ
are considered to be nuisance parameters. The frequencies f1
and f2 are both normalized to [−0.5, 0.5]. The noise terms

w(m,n) are the complex additive white Gaussian with zero

mean and variance σ2. The signal to noise ratio (SNR) is

given by ρ = A2/σ2.

The maximum likelihood estimator of the frequencies of

a 2-D exponential signal is given by the maximiser of the

2-D periodogram. The Fast Fourier Transform (FFT) algo-

rithm can be used to obtain a sampled version of the peri-

odogram in a computationally efficient manner. However,

this approach performs poorly compared to the optimum. To

improve the estimation accuracy, high-resolution approaches,

such as MEMP [1], 2-D ESPRIT [2] and IMDF [3], have been

proposed, but these methods suffer from high computational

cost [3]. In [4] the weight phase average (WPA) method is

proposed, which is an efficient way for estimating signal 2-D

exponential, however, it has a very high breakdown threshold.

Therefore, we present in this paper a novel 2-D interpolation

algorithm that achieves a good performance while maintain-

ing computational simplicity. To this end, we extend the one-

dimensional interpolation algorithm proposed by Aboutanios

and Mulgrew (A&M Algorithm) in [5] to the 2-D case.

When assessing a frequency estimation algorithm, it is

of prime importance to characterise the best possible perfor-

mance. The lower bound on the estimation variance is given

by the 2-D Cramer-Rao Lower Bound (2-D CRLB). Starting

from the matrix form given in [1], we derive the following

algebraic formulae of the 2-D CRLB for the signal model (1),

CRLBf1 =
6

(2π)2ρMN(M2 − 1)
(2)

CRLBf2 =
6

(2π)2ρNM(N2 − 1)
. (3)

The rest of the paper is organized as follows. In section

2, we develop the 2-D interpolation algorithm. This followed

by the theoretical analysis in section 3. Simulation results are

given in section 4, while relevant conclusions are drawn in

section 5.

2. THE 2-D INTERPOLATION ALGORITHM

The 2-D interpolation algorithm is summarised in Table 1.

Similarly to the 1-D A&M algorithm, the 2-D estimator com-

prises two stages, the coarse estimation stage and the fine es-

timation stage, which is an effective and widely used strategy,

[6]. The coarse estimation stage involves a 2-D maximum
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bin search of the 2-D periodogram to give coarse estimates

of both f1 and f2. In the fine estimation stage, two iterative

estimators are implemented jointly in an interleaved fashion

by interpolating 2-D Fourier coefficients at the edge of the

maximum bin in order to refine the estimates.

Table 1. The 2-D Interpolation Algorithm

Let X(k, l) = FFT (x) and Y (k, l) = |X(k, l)|2
Find (m̂, n̂) = argmax

k,l
Y (k, l)

Set δ̂0 = 0 and ζ̂0 = 0
Loop for i from 1 to Q, do

X
(δ)
p =

M−1∑
k=0

N−1∑
l=0

x(k, l)e−j2π(k
m̂+δ̂i−1+p

M +l
n̂+ζ̂i−1

N )

δ̂i = δ̂i−1 + h(δ̂i−1)

X
(ζ)
p =

M−1∑
k=0

N−1∑
l=0

x(k, l)e−j2π(k
m̂+δ̂i

M +l
n̂+ζ̂i−1+p

N )

ζ̂i = ζ̂i−1 + g(ζ̂i−1)
where

h(δ̂i−1) =
1

2
�
{
X

(δ)
0.5 +X

(δ)
−0.5

X
(δ)
0.5 −X

(δ)
−0.5

}

and

g(ζ̂i−1) =
1

2
�
{
X

(ζ)
0.5 +X

(ζ)
−0.5

X
(ζ)
0.5 −X

(ζ)
−0.5

}

Let f̂1 =
m̂+ δ̂Q

M
and f̂2 =

n̂+ ζ̂Q
N

Assume that we are operating above the breakdown

threshold and (m̂, n̂) is the index of the true maximum bin

[5]. The true frequencies can then be written as:

f1 =
m̂+ δ

M
and f2 =

n̂+ ζ

N
(4)

where δ and ζ are the residuals of f1 and f2 in the interval

[−0.5, 0.5], respectively.

Let us focus on the frequency f1 and examine the 2-D

DFT coefficients either side of the maximum bin along the

f1-axis,

X(δ)
p =

M−1∑
k=0

N−1∑
l=0

x(k, l)e−j2π(k m̂+p
M +l n̂

N ) +Wp, (5)

where p = ±0.5 and Wp are the Fourier coefficients of the

noise. Substituting (1) and (4) into (5) leads to

X(δ)
p = Aejφ

(1 + ej2πδ)(1− ej2πζ)

(1− ej2π
δ−p
M )(1− ej2π

ζ
N )

+Wp. (6)

Now for (δ − p) � M and ζ � N we have that ej2π
δ−p
M ≈

1 + j2π(δ − p)/M and ej2π
ζ
N ≈ 1 + j2πζ/N . Ignoring the

noise components Wp, (6) becomes

X(δ)
p ≈ bδ

δ

δ − p
, (7)

with bδ given by

bδ = −MNAejφ
(1 + ej2πδ)(1− ej2πζ)

4π2δζ
.

The estimation of the frequency residual δ can be obtained

from

h(δ) ≈ 1

2
�
{
bδ

δ
δ−0.5 + bδ

δ
δ+0.5

bδ
δ

δ−0.5 − bδ
δ

δ+0.5

}
= δ. (8)

The real part operation is not necessary here. However, it will

result in a real-valued estimation of δ when the complex noise

terms Wp are included. Similarly, we can find g(ζ) ≈ ζ by

considering the coefficients X
(ζ)
p .

3. THEORETICAL ANALYSIS

In this section, we derive the theoretical properties of the al-

gorithm based on the procedure in [5]. We first focus on the

derivation of the asymptotic variance and then analyse the it-

erative implementation of the algorithm. We only consider

the analysis procedure for the estimation of f1, with the re-

sults for f2 easily obtainable from those for f1.

3.1. Asymptotic Variance

Let δ̂, ζ̂, f̂1, f̂2 be the estimated values of their corresponding

parameters. Including the noise terms Wp, (8) becomes

h ≈ 1

2
�
{
2δ + δ2−0.25

bδδ
(W0.5 +W−0.5)

1 + δ2−0.25
bδδ

(W0.5 −W−0.5)

}
. (9)

Now Wp are of order O
(√

MN ln(M) ln(N)
)

whereas bδ

is O(MN), resulting in the second term in the denominator

of (9) being O
(
M− 1

2N− 1
2

√
ln(M) ln(N)

)
. Therefore,

h ≈ δ +
δ2 − 0.25

2δ
�
{
(1− 2δ)W0.5 + (1 + 2δ)W−0.5

bδ

}
+O

(
M−1N−1 ln(M) ln(N)

)
.

Using the fact that the noise variances var[�{W0.5}] =
var[�{W−0.5}] = MNσ2/2, and

|bδ|2 = M2N2A2 cos
2(πδ) sin2(πζ)

(πδ)2(πζ)2
,

the asymptotic variance of δ̂ simplifies to

var[δ̂] =
π2(δ2 − 0.25)2(4δ2 + 1)

4Mρ cos2(πδ)
× (πζ)2

N sin2(πζ)
(10)

The asymptotic variance of ζ̂ can be obtained by exchanging

δ and ζ as well as M and N ,

var[ζ̂] =
π2(ζ2 − 0.25)2(4ζ2 + 1)

4Nρ cos2(πζ)
× (πδ)2

M sin2(πδ)
. (11)
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Fig. 1. Plot of the ratio of the asymptotic variance of f̂1 to the

2-D ACRLB as a function of δ and ζ.

Given that f̂1 = (m̂ + δ̂)/M , the asymptotic variance of f̂1
becomes

var[f̂1] =
π2(δ2 − 0.25)2(4δ2 + 1)

4M3ρ cos2(πδ)
× (πζ)2

N sin2(πζ)
. (12)

The ratio of the asymptotic variance to the asymptotic

CRLB (ACRLB) is useful in putting the estimation perfor-

mance in prespective. The 2-D ACRLB expression for f1 is

given by

CRLBf1 ≈ 6

(2π)2ρM3N
, (13)

and the resulting ratio becomes

Rf1 =
π4(δ2 − 0.25)2(4δ2 + 1)

6 cos2(πδ)
× (πζ)2

sin2(πζ)
. (14)

This ratio is shown in Fig.1. We see that it is dependent on

both δ and ζ, but independent of M , N and the SNR. Also

note that when δ = ζ = 0, Rf1 = Rf2 = (π4(0.25)2)/6 =
1.0147, indicating that the 2-D interpolation algorithm has a

minimum asymptotic variance that is just slightly above the

2-D CRLB.

The ratio of var[f̂2] to the 2-D ACRLB is of course ob-

tained by exchanging δ and ζ,

Rf2 =
π4(ζ2 − 0.25)2(4ζ2 + 1)

6 cos2(πζ)
× (πδ)2

sin2(πδ)
, (15)

and the observations made for f1 are also applicable to f2.

3.2. Iterative Implementation

Now we turn to the analysis of the iterative implementation.

As is shown in the algorithm procedure in Section 2, for each

iteration, the previous estimation of frequency residuals are

removed from the maximum bin, so the estimators are applied

to estimate the compensated data. Expanding h(δ) as a Taylor

series about the true residual of f1, which we denote as δ0,

yields

h(δ) =
sin

(
2π
M (δ0 − δ)

)
2 sin( π

M )
[1 +O(λ)]

= (δ − δ0)h
′(δ0)[1 +O(λ)],

where λ = M− 1
2N− 1

2

√
ln(M) ln(N) and

h′(δ0) = − π

M sin( π
M )

[1 +O(λ)]

= −1 +O(λ).

As a result, the estimate δ̂ at the ith iteration becomes

δ̂i = δ̂i−1 + h(δ̂i−1)

= δ0 + (δ̂i−1 − δ0)O(λ). (16)

Similarly expanding g(ζ), we can get:

ζ̂i = ζ̂i−1 + g(ζ̂i−1)

= ζ0 + (ζ̂i−1 − ζ0)O(λ), (17)

where ζ0 is the true residual of f2. Both (16) and (17) are

easily shown to be contractive mappings [5], which ensures

by the fixed point theorem that the estimates converge and

limi→∞ δ̂i = δ0 and limi→∞ ζ̂i = ζ0. Now the variance

expressions in (10) and (11), which we denote as V1(δ, ζ)
and V2(ζ, δ) respectively, and their corresponding ratios to the

ACRLB, are continuous functions of δ and ζ on [−0.5, 0.5]2.

As h(δ) and g(ζ) are implemented alternatively in each iter-

ation, the variance of δ̂i is V1(δ0 − δ̂i−1, ζ0 − ζ̂i−1), whereas

that of ζ̂i is V2(ζ0 − ζ̂i−1, δ0 − δ̂i). Thus, in the limit, the

variances become

var[δ̂∞] = lim
i→∞

V1(δ0 − δ̂i−1, ζ0 − ζ̂i−1)

= V1(0, 0), (18)

and

var[ζ̂∞] = lim
i→∞

V2(ζ0 − ζ̂i−1, δ0 − δ̂i)

= V2(0, 0) = V1(0, 0). (19)

Thus, the variances of δ̂ and ζ̂ converge to the minimum point.

When running the estimator iteratively, however, the iter-

ations should be stopped when the residuals become of order

lower than or equal to the CRLB, which is O
(
M− 1

2N− 1
2

)
for both δ and ζ. Following the argument of [5], an ex-

amination of the estimation functions h(δ) and g(ζ) reveals

that only two iterations are needed to reach this condition.

At the output of the second iteration, both δ0 − δ̂2 and

ζ0 − ζ̂2 are O
(
M−1N−1 ln(M) ln(N)

)
which, in fact, is

o
(
M− 1

2N− 1
2

)
. Therefore, it is sufficient to apply the esti-

mator only for two iterations for the minimum variance to be

attained.
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Fig. 2. RMSE of the 2-D interpolation algorithm versus SNR

(M = N = 32). 10000 Monte Carlo runs were used.

4. SIMULATION RESULTS

The proposed 2-D interpolation algorithm was implemented

and the simulation results are reported in this section. Fre-

quencies are randomly selected in all simulations. Fig. 2

shows the estimate root mean squared error (RMSE) versus

SNR for M = N = 32. Included for comparison are the 2-D

CRLB, the curve for f1 obtained by the weighed phase aver-

age (WPA) method [4] as well as the curve for f1 obtained by

applying the 1-D estimator to each column of the data and av-

eraging the results. As expected, the RMSE of the estimates

of both f1 and f2 are quite close to the CRLB. It is obvious

that the proposed algorithm outperforms WPA by enjoying a

30dB lower breakdown threshold. Also observe that for high

SNR, the RMSE of the estimates obtained from the 1-D al-

gorithm is identical to that of the 2-D interpolators. This is

expected as the 2-D CRLB for the incoherent case is simply

the 1-D CRLB divided by the number of estimates (that is for

f1, for instance, it is the 1-D CRLB divided by N ). However,

the threshold of the 1-D case is about 15dB worse than the

2-D case. This results from the SNR gain that the coherent

combining gives when the 2-D estimator is used. Since the

estimate of f1 is used in the calculation of f̂2 in the first iter-

ation, we notice that the RMSE of f̂2 after the first iteration

is slightly better than that of f̂1. Furthermore, the curves af-

ter iteration 1 clearly show the estimation bias at high enough

SNR, with the bias disappearing at the output of the second

iteration. Finally, for the sake of completeness, Fig. 3 shows

the performance of the estimator for M = 2N = 64. The

lower CRLB, as well as lower estimation variance, of f1 after

the second iteration are evident.

5. CONCLUSION

We have proposed a computationally simple algorithm for es-

timating the frequencies of a noisy 2-D random phase com-
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Fig. 3. RMSE the 2-D interpolation algorithm versus SNR

(M = 64, N = 32). 10000 Monte Carlo runs were used.

plex exponential. The algorithm comprises a coarse estimator

using the maximum bin search followed by an interpolation

stage. In the interpolation stage, two bins either side of the

maximum are used to refine the estimates of the frequencies.

The theoretical analysis shows that the performance of the it-

erative algorithm converges after two iterations, with the ratio

of the asymptotic variance to the 2-D ACRLB achieving a

minimum value of 1.0147. The theoretical results were con-

firmed by simulations.

6. REFERENCES

[1] Y. Hua, “Estimating two-dimensional frequencies by ma-

trix enhancement and matrix pencil,” IEEE Trans. Signal
Process., vol. 40, pp. 2267–2280, September 1992.

[2] S. Rouquette and M. Najim, “Estimation of frequencies

and damping factors by two-dimensional ESPRIT type

methods,” IEEE Trans. Signal Process., vol. 49, pp. 237–

245, January 2001.

[3] Jun Liu and Xiangqian Liu, “An eigenvector-based ap-

proach for multidimensional frequency estimation with

improved identifiability,” IEEE Trans. Signal Process.,
vol. 54, pp. 4543–4556, December 2006.

[4] S. Kay and R. Nekovei, “An efficient two-dimensional

frequency estimator,” IEEE Trans. Acoust., Speech, Sig-
nal Process., vol. 38, pp. 1807–1809, October 1990.

[5] E. Aboutanios and B. Mulgrew, “Iterative frequency esti-

mation by interpolation on Fourier coefficients,” IEEE
Trans. Signal Process., vol. 53, pp. 1237–1241, April

2005.

[6] B. G. Quinn, “Estimating frequency by interpolation us-

ing Fourier coefficients,” IEEE Trans. Signal Process.,
vol. 42, pp. 1264–1268, May 1994.

3356


