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ABSTRACT

In this paper we study the recovery of block sparse signals and ex-
tend conventional approaches in two important directions; one is
learning and exploiting intra-block correlation, and the other is gen-
eralizing signals’ block structure such that the block partition is not
needed to be known for recovery. We propose two algorithms based
on the framework of block sparse Bayesian learning (bSBL). One
algorithm, directly derived from the framework, requires a priori
knowledge of the block partition. Another algorithm, derived from
an expanded bSBL framework using the generalization method, can
be used when the block partition is unknown. Experiments show that
they have superior performance to state-of-the-art algorithms.

Index Terms— Sparse Signal Recovery, Compressed Sensing,
Sparse Bayesian Learning, Block Sparse Model, Cluster Structure

1. INTRODUCTION

The basic problem in compressed sensing and sparse signal recovery
is to recover a sparse signal, a signal with only a few non-zero ele-
ments, from a small number of its linear measurements. A trend in
the field is to exploit structure of signals for better performance. In
this paper we study the recovery of block sparse signals. Its mathe-
matical model is given by [1–4]

y = Φx+ v (1)

where the signal x has the block structure

x = [x1, · · · , xd1︸ ︷︷ ︸
xT
1

, · · · , xdg−1+1, · · · , xdg︸ ︷︷ ︸
xT
g

]T (2)

Here, y ∈ R
M×1 is a measurement vector consisting of M avail-

able measurements. Φ ∈ R
M×N (M � N) is a known matrix.

x ∈ R
N×1 is the block sparse signal which we want to recover. v

is an unknown noise vector. In the block partition (2), d1, · · · , dg
are not necessarily identical. Among the g blocks, only a few blocks
are nonzero. The model (1)-(2) is called the block sparse model [4].
Recent works [2,3] have shown that if such block partition can be ex-
ploited, then under certain conditions, the number of measurements
required to recover x can be further reduced.

Given the block partition, a number of algorithms have been pro-
posed, such as Group Lasso [1], Mixed �2/�1 Program [4], Block-
OMP [3], and Block-CoSaMp [2]. A summary of requirements
and abilities of typical algorithms is given in Table 1. However,
in many applications the block partition is unknown. So, how to
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adaptively estimate the block partition while recovering the sparse
signal is a challenge. Some algorithms have been proposed, such
as DGS [5], and CluSS-MCMC [6]. But in some cases these algo-
rithms may perform even poorer than some general CS algorithms
which do not exploit the underlying block partition. Recently, it is
found in other related models such as the multiple measurement vec-
tor (MMV) model, exploiting (inter-vector) correlation structure can
greatly improve algorithms’ performance [7]. Unfortunately, for the
block sparse model considered here, there is no algorithm exploiting
correlation structure in each block (i.e. intra-block correlation).

Based on the framework of block sparse Bayesian learning
(bSBL) [7], we derive two algorithms which can learn and exploit
intra-block correlation and have superior performance to state-of-
the-art algorithms. One algorithm, directly derived from the bSBL
framework, requires a priori knowledge of the block partition. An-
other algorithm, derived from an expanded bSBL framework, is
based on a weaker assumption on the block structure but actually
can be used when the block partition is unknown. The two algo-
rithms show that intra-block correlation is greatly helpful to improve
recovery performance. Besides, the second one shows that the ex-
panded bSBL framework is a promising framework when the block
partition is unknown.

2. THE BSBL FRAMEWORK AND THE CLUSTER-SBL
(TYPE I) ALGORITHM

Based on the block sparse model (1)-(2), we assume each block xi ∈
R

di×1 satisfies a parameterized multivariate Gaussian distribution:

p(xi) ∼ Nx(0, γiBi), i = 1, · · · , g
Here γi is a nonnegative parameter. When γi = 0, the i-th block
becomes zero. During the learning procedure, most γi(∀i) tend
to zero, due to the mechanism of automatic relevance determina-
tion [8]. Bi ∈ R

di×di is a positive definite matrix, capturing cor-
relation structure of the i-th block. Further, by assuming the blocks
are mutually uncorrelated, we have the prior of x, given by p(x) ∼
Nx(0,Σ0), where Σ0 is a block-diagonal matrix with each principal
block given by γiBi. The noise vector is assumed to satisfy p(v) ∼
Nv(0, λI), where λ is a nonnegative scalar. Therefore the posterior
of x is given by p(x|y;λ, {γi,Bi}gi=1) = N (μx,Σx) with μx =

Σ0Φ
T
(
λI+ΦΣ0Φ

T
)−1

y and Σx = (Σ−1
0 + 1

λ
ΦTΦ)−1. Once

the hyperparameters λ, {γi,Bi}gi=1 are estimated, the Maximum-
A-Posterior (MAP) estimate of x can be directly obtained from the
mean of the posterior.

This model is directly compatible with the block sparse Bayesian
learning (bSBL) framework, which was originally developed in [7]
for learning the hyper-parameters λ, γi,Bi(∀i) in the MMV model
with inter-vector correlation. This is not surprising, since the MMV

3345978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



Table 1. Summary of requirements and abilities of some typical algorithms. ‘�’ means that a given algorithm needs the corresponding a
priori information. ‘YES’ means a given algorithm is able to deal with the corresponding situation.

need block partition?
need nonzero block
(or element) number?

for noisy
cases?

for noiseless
cases?

exploit intra-block
correlation?

Group Lasso [1] � YES YES

Mixed �2/�1 [4] � YES YES

Block-OMP [3] � YES

Block-CoSaMp [2] � � YES

DGS [5] � YES YES

CluSS-MCMC [6] YES YES

Cluster-SBL(Type I) � YES YES YES
Cluster-SBL(Type II) YES YES YES

model can be cast as a special case of a block sparsity model [4]. So,
following the EM method used in [7], we can derive the following
iterative algorithm

μx ← Σ0Φ
T (λI+ΦΣ0Φ

T )−1
y

Σx ← Σ0 −Σ0Φ
T (λI+ΦΣ0Φ

T )−1
ΦΣ0

λ ← ‖y −Φμx‖22 + λ[N − Tr(ΣxΣ
−1
0 )]

M

γi ← 1

di
Tr

[
B−1

i

(
Σi

x + μi
x(μ

i
x)

T )] ∀i

where in the last learning rule μi
x is the corresponding i-th block in

μx (with the size di×1), and Σi
x is the corresponding i-th principal

diagonal block in Σx (with the size di × di). Once the algorithm
converges, the estimate of x is given by μx.

Similarly, using the EM method we can derive a learning rule
for each Bi. However, assigning each block with a different Bi can
result in overfitting. When blocks have the same size, an effective
strategy to prevent overfitting is to constrain all the blocks to have
the same correlation structure [7]. In this case, we can constrain
Bi = B(∀i). And its learning rule is obtained as follows:

B← 1

g

g∑
i=1

Σi
x + μi

x(μ
i
x)

T

γi
. (3)

However, the algorithm’s performance can be improved by further
constraining the matrix B. The idea is to find a positive definite

and symmetric matrix B̂ such that B̂ is close to B especially in the
elements along the main diagonal and the main sub-diagonal. Based

on this idea, a possible form of B̂ is given by

B̂ � Toeplitz([1, r, · · · , rd−1])

=

⎡
⎢⎢⎢⎣

1 r r2 · · · rd−1

r 1 r · · · rd−2

...
...

. . .
...

rd−1 rd−2 · · · 1

⎤
⎥⎥⎥⎦ (4)

Here r � sign(m1
m0

)min{|m1
m0
|, 0.99}, where m0 is the average of

the elements along the main diagonal and m1 is the average of the
elements along the main sub-diagonal of the matrix B in (3). 0.99 is
a bound such that r has a reasonable value. The form in (4) is equiv-
alent to modeling elements in a block as a first order AR process.
A similar constraint on B was used in our MMV work [9], which
shows good results. When blocks have different sizes, we still can

adopt the above idea. First, using the EM method we can derive the
learning rule for each Bi, and then obtain r by averaging over cor-
responding elements from all the matrices Bi(∀i), and finally form

B̂i � Toeplitz([1, r, · · · , rdi−1]) for each block.

We denote the above algorithm by Cluster-SBL (Type I).

3. THE EXPANDED BSBL FRAMEWORK AND THE
CLUSTER-SBL (TYPE II) ALGORITHM

In many applications the block partition (2) is not available. Here we
generalize the conventional block sparse model with the unknown
block partition. Based on it, we derive another algorithm, called
Cluster-SBL (Type II), which requires little a priori knowledge on
the block structure. Note that based on this generalized model, many
existing algorithms can also be used. But our proposed algorithm is
more advantageous as shown in experiments.

Our model is motivated by the physics of certain applications,
but with proper interpretation it has considerable flexibility and gen-
erality. We first assume that all the nonzero blocks are of equal size
h and are arbitrarily located. This model is consistent with com-
munication channel modeling where an ideal sparse channel con-
sisting of a few specular multi-path components has a discrete-time,
bandlimited, baseband representation, which exhibits a block sparse
structure with the block centers determined by the arbitrary arrival
times of the multi-path components. Since the blocks are arbitrarily
located they can overlap giving rise to larger unequal blocks, mak-
ing the model quite flexible. So, the assumption of equal block-size
is not limiting. However, we would like to add that though the re-
sulting algorithm is not very sensitive to the choice of h, h still has
to be properly chosen for good algorithmic performance. We will
comment more on h in Section 4.

Given the identical block size h, there are p � N − h+ 1 pos-
sible blocks in x, which overlap each other. The i-th block starts
at the i-th element and ends at the (i + h − 1)-th element of x.
All the nonzero entries in x lie in some of these blocks. Similar to
Section 2, for the i-th block, we assume it satisfies a multivariate
Gaussian distribution with the mean given by 0 and the covariance
matrix given by γiBi, where Bi ∈ R

h×h. So we have the prior of
x as the form: p(x) ∼ Nx(0,Σ0). Note that due to the overlapping
of these blocks, here Σ0 is no longer a block diagonal matrix as in
Section 2. It has the structure that each γiBi lies along the principal
diagonal of Σ0 and overlaps other γjBj (see the left picture in Fig.1
for an illustration). Starting with this model we can develop algo-
rithms for estimating the hyper-parameters λ, γi,Bi(∀i). However,
because the covariance matrix Σ0 is no longer a block diagonal ma-
trix we cannot directly use the bSBL framework and need to make
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Fig. 1. Structures of Σ0 and Σ̃0. Each color block corresponds to a
possible nonzero block in x.

some modification.

To facilitate the use of the bSBL framework, we expand the co-
variance matrix Σ0 as follows:

Σ̃0 = Bdiag(γ1B1, · · · , γpBp) ∈ R
ph×ph

(5)

where Bdiag(·) denotes a block diagonal matrix with principal di-
agonal blocks given by γ1B1, · · · , γpBp. Note that now γiBi does
not overlap other γjBj(i �= j) (see the right picture in Fig.1). The

expanded covariance matrix Σ̃0 implies the decomposition of x:

x =

p∑
i=1

Eizi, (6)

where E{zi} = 0, E{zizTj } = δi,jγiBi (δi,j = 1 if i = j; oth-

erwise, δi,j = 0), and z � [zT1 , · · · , zTp ]T ∼ Nz(0, Σ̃0). Ei ∈
R

M×h is a zero matrix except that the part from its i-th row to
(i + h − 1)-th row is replaced by the identity matrix I. Then the
original model (1) can be expressed as:

y =

p∑
i=1

ΦEizi + v � Az+ v, (7)

where A � [A1, · · · ,Ap] and Ai � ΦEi. Now we see the new
model (7) is exactly a bSBL model. Directly following the develop-
ment in Section 2, we can derive the algorithm as follows:

μz ← Σ̃0A
T (λI+AΣ̃0A

T )−1
y

Σz ← Σ̃0 − Σ̃0A
T (λI+AΣ̃0A

T )−1
AΣ̃0

γi ← Tr
[
B−1

(
Σi

z + μi
z(μ

i
z)

T
)]

h
, ∀i

B ← 1

p

p∑
i=1

Σi
z + μi

z(μ
i
z)

T

γi

λ ← ‖y −Aμz‖22 + λ[ph− Tr(ΣzΣ̃
−1
0 )]

M

where μi
z is the corresponding i-th block in μz , and Σi

z is the cor-
responding i-th main diagonal block in Σz . As in Section 2 we can
further constrain the matrix B for better performance. After conver-
gence, the original signal x is recovered by (6).
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Fig. 2. Results of Experiment 1.

4. EXPERIMENTS

We compared our proposed algorithms to T-MSBL [7] and most al-
gorithms in Table 1. Note that T-MSBL, when used in the model
(1)-(2), can be viewed as a special case of our proposed algorithms
(block size is 1). In experiments, we also computed the ‘oracle’
result, which was the least-square estimate of the signal x given
its true support (i.e. locations of nonzero elements). We chose
MSE as a performance index in noisy cases, which was defined by
‖x′−x‖22/‖x‖22, where x′ was the estimate of x. In noiseless cases
we chose the Success Rate as a performance index, which was de-
fined as the ratio of the number of successful trials to the number
of total trials (For every set of experiment settings, our experiment
consisted of 500 trials.). A successful trial was defined as the one
when MSE ≤ 10−6.

Matlab codes of the proposed algorithms and other experiment
results are available at: http://dsp.ucsd.edu/˜zhilin/
BSBL.html.

Experiment 1: Block partition is known in noiseless cases.
First we compared algorithms at different number of measure-
ments M . We generated a block sparse signal, whose length was
512. It consisted of 64 blocks with identical sizes, ten of which
were nonzero (randomly chosen). For the k-th nonzero blocks
(k = 1, · · · , 10), its elements were generated from a multivariate
Gaussian distribution: N (0,Σk), where Σk was generated using
the Matlab command: Toeplitz([1, βk, · · · , β7

k]). Note that βk

was the parameter measuring the intra-block correlation of the k-th
nonzero block. In each trial, it was randomly and uniformly chosen
from 0.9 to 0.99. The matrix Φ was of the size M × 512, where
M varied from 80 to 200. Since the block partition was known to
all the algorithms, we used Cluster-SBL (Type I). The result (Fig.2)
shows Cluster-SBL (Type I) had the best performance. It required
much fewer measurements than other algorithms to achieve the same
performance.

We also plot the performance curve of Cluster-SBL (Type I)
when it did not exploit the intra-block correlation (i.e. fixing B to the
identity matrix). Its performance was poorer than when it exploited
the correlation. This shows the benefits of exploiting intra-block cor-
relation. For example, to achieve the same recovery performance,
exploiting the correlation requires fewer measurements than ignor-
ing the correlation; or given the same measurements, exploiting the
correlation can achieve better recovery performance.

Experiment 2: Block partition is unknown in noisy cases.
Since Cluster-SBL (Type II), Cluss-MCMC, and DGS can be used
when block partition is unknown, we compared them in this exper-
iment. Φ was of the size 80 × 256. The number of nonzero ele-
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Fig. 3. Results of Experiment 2. The label ‘Cluster-SBL(k)’ denotes
Cluster-SBL with h = k.

ments in the signal was fixed to 32, which were randomly put into
4 blocks. So each block had random size and random location. To
more clearly see the effectiveness of our generalization model, we
set intra-block correlation to zero. SNR was 25 dB. For Cluster-
SBL (Type II), we set h to different values ranging from 2 to 10.
The result (Fig.3) shows that Cluster-SBL (Type II) had much better
performance than other compared algorithms. And its performance
was almost the same when h chose values from 3 to 10. We also
compared T-MSBL (can be viewed as Cluster-SBL (Type II) with
h = 1). The result shows it also had better performance than Cluss-
MCMC and DGS.

Experiment 3: Choice of the parameter h. In the algorithm
development we assumed that all the blocks have the same size h,
which is known. However, this assumption is not crucial for practical
use. When the size of a nonzero block of x, say xj , is larger or equal
to h, it can be recovered by a set of (overlapped) zi (i ∈ S , S is a
non-empty set). When the size of xj is smaller than h, it can also be
recovered by a zi for some i. In this case, the elements of zi with
global locations different to those of elements of xj are very close
to zero. By global locations, we mean the indexes in x.

Figure 4 shows a result from an experiment with the same exper-
iment settings as Experiment 3 but without noise. A nonzero block
of x, consisting of two elements with global locations being 93 and
94, was recovered by Cluster-SBL (Type II) with h = 6. A segment
in the recovered signal x′, whose global locations were from 92 to
97, was constructed from an estimated zi with some i. We can see
the elements in the segment with global locations different from 93
and 94 had very small amplitudes.

Therefore, the parameter h should be better viewed as a regular-
ization parameter, balancing the qualify of the recovered signal and
the computational load (larger h requires more computational load).
In Experiment 2 we have seen different values of h led to similar
performance. So in practice we suggest choosing a small value for h
to reduce computational load.

5. CONCLUSION

In this work we proposed two algorithms for the recovery of block
sparse signals with or without a priori knowledge on block parti-
tion. A uniqueness of them is that they can data-adaptively exploit
intra-block correlation. Although spatial correlation is widely stud-
ied in other signal processing fields, in the compressed sensing field
there is not much work studying the (spatial) intra-block correlation.
However, experiments showed that exploiting the intra-block corre-
lation can further improve algorithms’ performance. The recovery
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Fig. 4. A nonzero block (block size: 2) of x was recovered by
some zi (block size: 6). In x the values from the 92-th location
to 97-th location were [0,1.64269416, 1.80932747, 0, 0, 0].
In the recovered signal x′ the corresponding values were
[2.0 × 10−7,1.64269411, 1.80932730, 3.3 × 10−7,−7.7 ×
10−7,−5.7× 10−7].

of block sparse signals with unknown block partition is a more diffi-
cult problem, for which few algorithms were proposed. We proposed
an approach transforming the difficult problem to a much easier one.
Thus many existing algorithms requiring to know block partition can
be used. This approach also facilitates the exploitation of intra-block
correlation. Experiments showed that our algorithm based on this
approach has significant advantages.
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