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ABSTRACT

Many problems in digital communications involve wideband

radio signals. As the most recent example, the impressive

advances in Cognitive Radio systems make even more nec-

essary the development of sampling schemes for wideband

radio signals with spectral holes. This is equivalent to consid-

ering a sparse multiband signal in the framework of Compres-

sive Sampling theory. Starting from previous results on multi-

coset sampling and recent advances in compressive sampling,

we analyze the matrix involved in the corresponding recon-

struction equation and define a new method for the design of

universal multicoset codes, that is, codes guaranteeing perfect

reconstruction of the sparse multiband signal.

Index Terms— Multicoset sampling, compressive sam-

pling, multiband sparse signal, TI-ADC, universal pattern.

1. INTRODUCTION

Recent interest in Cognitive Radio (CR) systems [1] motivate

sensing schemes for multiband sparse signals which allow the

CR to decide which channels are really occupied and, in con-

sequence, make an efficient usage of the spectrum. At the

same time, intensive work in the area of compressive sam-

pling has yielded a number of algorithms and hardware sys-

tems to obtain compressed samples from frequency-domain

sparse signals. Taking into account that CR systems need to

analyze wide frequency bands, any scheme that could acquire

the full wide band at a sampling rate lower than the corre-

sponding Nyquist rate could provide samples to an spectrum

analyzer based on compressed measurements [2, 3] with the

consequent reduction in resource usage.

Most hardware systems which have been proposed for

the acquisition of compressed samples are based on Time-
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Interleaved Analog-to-Digital Converters (TI-ADCs)1. Dif-

ferent sampling patterns to operate different TI-ADC archi-

tectures have been reported, e.g., in [5, 6, 7, 8]. All these

works assume that the wideband signal is multiband sparse

(i.e., only a small number of frequency subbands are occu-

pied) and that the locations of the occupied subbands are not

known a priori.

MUX 

Fig. 1. Block diagram of a general TI-ADC system.

Fig. 1 shows the structure of a general TI-ADC system,

where fs = 1/T denotes the Nyquist rate, Mi ∈ Z, and τi
are different delays obtained as τi = (ci/di)T , i = 1, . . . ,K
with ci, di ∈ Z. The most common usage of TI-ADCs is a

particular case of this model, with τi = (i − 1)T and equal

sampling frequencies fi = fs/K. The general structure of

Fig. 1 include the different sampling strategies proposed in

the aforementioned papers. These are briefly reviewed next.

In [5], a p-sparse multiband signal is assumed. The uni-

form sampling grid (at Nyquist rate) is divided into blocks of

L consecutive samples, and then only p out of these L samples

are acquired. This can be implemented with only p branches

of the TI-ADC system in Fig. 1, using τi = ciT with integers

0 ≤ c0 < c1 < · · · < cp ≤ L − 1 and equal sampling fre-

quencies fi = fs/L. Only certain selections of the p output

1A noteworthy exception is the modulated wideband converter proposed

in [4].
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channels lead to the reconstruction of the original signal, al-

though the authors of [5] do not provide a design criterion for

this; the issue of finding an appropriate set {ci}pi=1 (a multi-
coset code) is stated to be a combinatorial problem.

Another TI-ADC sampling scheme was proposed in [7],

although the focus was on the reconstruction algorithm and

not on the issue of channel selection; this is accomplished as

in [9]. The same authors proposed later [6] a set of TI-ADCs

working synchronously (i.e., with τi = 0, i = 0, . . . ,K −
1), and using different sampling frequencies for each ADC

(with the sum of of these different sampling rates lower than

the Nyquist rate). Again, the focus is on the development of

a reconstruction scheme for a set of different and arbitrarily

chosen sampling frequencies; no criterion is proposed on how

to choose the sampling frequencies. Note that selecting a set

of sampling frequencies is equivalent to selecting a specific

multicoset code in the architecture of [5].

The scheme proposed in [8] can also be implemented with

the TI-ADC architecture of Fig. 1 and a multicoset sampling

scheme, with a random selection of the output channels. The

main drawback of random selection approaches is that they

require to have the K ADCs constantly working. In contrast,

fixed channel selection methods allow to reduce the number

of branches of the hardware system to the number of active

bands p, with the corresponding reduction in area size and

power consumption. Motivated by this fact, we provide an al-

gorithm for the design of universal multicoset codes, i.e., for

the selection of the parameters in the general TI-ADC sys-

tem of Fig. 1 guaranteeing perfect reconstruction of p-sparse

multiband signals. To our knowledge, this is the first sys-

tematic method proposed for this goal; previous codes were

either obtained by direct search [10] or relied on the choice of

a prime value of L, which renders every pattern universal [5].

2. PROBLEM STATEMENT

As in [5], we assume a complex-valued p−sparse multiband

signal x(t), bandlimited to [0, fs]. The number of active

bands is N , and an upper bound B for the bandwidth of each

of these bands is known. The sampling stage is implemented

as in Fig. 1 by considering K = L, τk = kT and fk = fs/L
for k = 1,. . . ,L. Only p ≥ N ADC channels are imple-

mented. Thus, for each block of L Nyquist-rate samples, p of

them are acquired, with indices 0 ≤ c1 < c2 < ...cp ≤ L−1.

This can also be seen as obtaining p different uniform sam-

pling sequences xci [n] at rates fs/L:

xci [n] =

{
x(t = nT ), n = mL+ ci for some m ∈ Z,

0, otherwise.

(1)

Following [5], we define the sampling pattern C =
{ci}pi=1. The reconstruction of the multiband signal from

the acquired samples requires the selection of L, p and C

such that X(f) can be reconstructed based on

y(f) =
1

LT
Ax(f), (2)

with

yi(f) = Xci

(
ej2πfT

)
, i = 1, . . . , p, (3)

xk(f) = X

(
f +

k

LT

)
, k = 0, . . . , L− 1, (4)

and where A is a p× L matrix with elements

aik = exp

(
j
2π

L
cik

)
. (5)

It is noted in [5] that x(f) can be recovered from y(f) if

L ≤ fs/B, p ≥ N and A has full Kruskal-rank2, with this

rank being equal to p. For given L and p, a sampling pattern C
that results in a fully Kruskal-rank A is termed universal [5].

In the remainder several results are presented revealing cer-

tain properties of the Kruskal-rank of A, which in turn will

suggest a design method for universal sampling patterns.

3. K-RANK ANALYSIS OF VANDERMONDE
MATRICES

Let us define w = ej
2π
L and

wi = exp

(
j
2π

L
ci

)
= wci , i = 1, . . . , p. (6)

Then, from (5), one has aik = wk
i . Thus, the i-th row of A

contains consecutive powers of wi:
[
1, wi, w

2
i , · · · , wL−1

i

]
.

In other words, the rows of A are extracted from those of an

L × L row-wise Vandermonde matrix. Although there is no

general criterion for the K-rank of a row-wise Vandermonde

matrices, the following result applies to column-wise Vander-

monde matrices.

Lemma 1. Consider p distinct numbers x1,. . . ,xp ∈ C. Let
V be the n× p column-wise Vandermonde matrix defined as

vij = xi−1
j , i = 1, . . . , n, j = 1, . . . , p.

Then the K-rank of V is equal to its rank, which is min (p, n).

Proof. For n = p, recall that the Vandermonde square ma-

trix of order p has full rank iff the p numbers x1,. . . ,xp are

distinct, which is the case; hence the K-rank of V equals its

rank p. If p < n, the p columns of V are linearly independent

since the we can build a p× p submatrix from the first p rows

of V ; as this square submatrix is also a column-wise Vander-

monde matrix of p distinct numbers x1,. . . ,xp, then it has full

rank p, so the K-rank of V is p.

2The Kruskal- or K-rank of a matrix is the largest value of m such that

every subset of m columns of the matrix is linearly independent.
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Finally for p > n, let us consider any set of n columns of

V . These form another column-wise Vandermonde matrix,

whose entries are the powers of xm1
,. . . ,xmn

. As these n
numbers are distinct, its rank is maximum (n). Hence the K-

rank of V is n.

Notice that the maximum value for the K-rank (or the

rank) of a p× n matrix is min (p, n). Hence, Lemma 1 gives

a sufficient condition for V to have maximum K-rank. Let us

prove that it is also necessary.

Corollary 2. Let V be a n × p column-wise Vandermonde
matrix whose columns are the powers of x1,. . . ,xp ∈ C. Then

K-rank of V is maximum ⇐⇒ x1, . . . , xp are distinct.

Proof. On one hand, if xi = xk then the i-th and k-th

columns of V coincide, so its K-rank is 1 (not maximum

since p, n > 1). On the other hand, if all the numbers

x1, ..., xp are distinct, Lemma 1 ensures that the K-rank of V
is maximum.

4. DESIGN OF UNIVERSAL MULTICOSET CODES

From the previous results it is possible to provide conditions

on c1, c2,. . . ,cp under which A has maximum K-rank (p).

Theorem 3. Let c1, c2, ..., cp (p ≤ L) constitute an arith-
metic progression of difference d �= 0 (i.e., ci = c1 +
(i− 1) d). Let A be the p×L row-wise Vandermonde matrix
defined by (5). Then

A has maximum K-rank (p) ⇐⇒ d and L are coprime.

Proof. Matrix A can be written as

A =

⎛
⎜⎜⎜⎝

1 w1 w2
1 · · · wL−1

1

1 w2 w2
2 · · · wL−1

2
...

... · · · ...

1 wp w2
p · · · wL−1

p

⎞
⎟⎟⎟⎠ .

Now we use that ci = c1 + (i− 1) d. Each wi = wci =
wc1+(i−1)d = w1w

(i−1)d. Hence A takes the form⎛
⎜⎜⎜⎝

1 w1 w2
1 · · · wL−1

1

1 w1w
d w2

1w
2d · · · wL−1

1 w(L−1)d

...
... · · · ...

1 w1w
(p−1)d w2

1w
2(p−1)d · · · wL−1

1 w(L−1)(p−1)d

⎞
⎟⎟⎟⎠ .

By extracting the factor wj−1
1 from the j-th column, A is seen

to have the same K-rank as the matrix⎛
⎜⎜⎜⎝

1 1 1 · · · 1
1 wd w2d · · · w(L−1)d

...
... · · · ...

1 w(p−1)d w2(p−1)d · · · w(L−1)(p−1)d

⎞
⎟⎟⎟⎠

which is indeed a p × L column-wiseVandermonde matrix

of numbers 1, wd, w2d, · · · , w(L−1)d. As p ≤ L, Corollary 2

states that its K-rank is maximum (p) iff all those L numbers

are distinct. Let us show that two of these numbers are equal

iff d and L are not coprime. Indeed, there exist 0 ≤ a <
b < L such that wad = wbd, or equivalently w(b−a)d = 1, iff

(b− a) d = cL for some integer c. This amounts to saying

that d and L are not coprime. The claim follows.

The following sufficient condition now follows.

Corollary 4. Any set of consecutive p numbers c1, . . . , cp
(with p ≤ L), yield a matrix A of maximum K-rank (p).

Proof. Consecutive numbers form an arithmetic progression

of difference d = 1, which is always coprime with L. So the

claim follows from Theorem 3.

Remark 5. Note that the difference d can be either positive

or negative, and smaller or greater than L. The proof does not

make use of the assumption 0 < d < L. Hence, the numbers

c1, c2,. . . ,cp need not be in increasing order (as stated in [5]).

Moreover, they can even be greater than L; in that case they

would be replaced by cj mod L. That would yield differ-

ent sets of numbers c1, c2,. . . ,cp with no order at all (neither

increasing nor decreasing).

4.1. Examples

• For L = 12, difference d = 5 yields, for c1 = 0, the

arithmetic progression 0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 0, . . .
(cyclic repetition of length 12) where we have substi-

tuted cj by cj mod 12 where necessary. Theorem 3

ensures that every subset of p ≤ 12 consecutive num-

bers of this sequence would yield maximum K-rank.

For instance, (5, 10, 3) or its permutation (3, 5, 10) or

its shifts, such as (0, 2, 7) , which is equivalent to its

permutation (2, 7, 0) which is the end of that length-12
cycle.

• For L = 12, difference d = 7 yields, for c1 = 0, the

arithmetic progression 0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, . . .
which is the reversed version of the sequence in the

previous example. For c1 = 2 we would obtain

2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, 7 which is a shifted arith-

metic sequence.

• For L = 12, the sequence (1, 3, 8) yields maximum K-

rank since it appears as 3, 8, 1 in the previous sequence

of difference d = 5.

To conclude this section let us recall the meaning of the

designed universal patterns in terms of the parameters of the

TI-ADC system in Fig. 1: for a TI-ADC architecture working

with equal sampling frequencies fk = fs/L, selecting ci as

proposed in Theorem 3 means selecting the p output branches

with τi = ciT , i = 1, . . . , p.
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Fig. 2. PSD estimation performance. (a) Support recovery

probability. (b) Estimator Variance for p = 128.

5. EXPERIMENTAL RESULTS IN A CR
FRAMEWORK

We illustrate the effectiveness of the proposed multicoset

sampling scheme in the context of the spectral estimation al-

gorithm for multichannel wideband signals presented in [3]3.

This algorithm reconstructs the power spectral density (psd)

of the received signal from a set of compressed measure-

ments, which are acquired by the TI-ADC scheme previously

discussed.

The psd to be estimated consists of a set of channels which

are 8 MHz wide and can be occupied by signals with flat spec-

trum with bandwidth B = 7.61 MHz. We assume that only

3 of the channels are occupied, and for simplicity in the pre-

sentation of results, they are all received with the same power

when active.

Fig. 2 shows the performance of the proposed estimator

for a range of signal-to-noise ratio (SNR) and different values

of the compression factor. Here we assume L = 1024, while

p ranges from 32 to 512, i.e. a compression factor from 1/32
to 1/2. In Fig. 2(a) we can observe a good recovery perfor-

mance for compression factors larger that 1/16, even when

the SNR presents a finite value. On the other hand, Fig. 2(b)

shows the variance of the power level estimator versus the

SNR for fixed p = 128. Comparing this figure with Fig. 2(a)

we can see that the variance is greatly reduced when the right

support is determined.

6. CONCLUSIONS

We have analyzed the Kruskal-rank of the reconstruction ma-

trix in a multicoset sampling framework, assuming an input

multiband signal and without a priori knowledge of band lo-

cations. From this analysis we have derived our main result: a

method to design universal multicoset sampling patterns, that

3Compression matrix of dimension p × L, 4 sample covariance matrix

realizations are averaged as input to the algorithm, 100 Monte Carlo realiza-

tions for each simulated point.

is, which guarantee perfect reconstruction of the multiband

signal within the framework of compressive sampling. In ad-

dition, we have presented some experimental results within a

Cogntive Radio setting, showing the effectiveness of the de-

signed sampling patterns.
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