
COMPRESSIVE VIDEO RECOVERY WITH UPPER AND LOWER BOUND CONSTRAINTS

David R. Jones, Rachel O. Schlick, and Roummel F. Marcia

Department of Applied Mathematics, University of California, Merced, CA USA

ABSTRACT

The recovery of sparse images from noisy, blurry, and potentially
low-dimensional observations can be accomplished by solving an
optimization problem that minimizes the least-squares error in data
fidelity with a sparsity-promoting regularization term (the so-called
�2 − �1 minimization problem). This paper focuses on the recon-
struction of a video sequence of images where known pixel-intensity
bounds exist at each video frame. It has been established that the
�2 − �1 minimization problem can be solved efficiently using gradi-
ent projection, which was recently extended to solve general bound-
constrained �2 − �1 minimization problems. Furthermore, the video
reconstruction can be made more efficient by exploiting similarities
between consecutive frames. In this paper, we propose a method for
reconstructing a video sequence that takes advantage of the inter-
frame correlations while constraining the solution to satisfy known
a priori bounds, offering a higher potential for increasingly accurate
reconstructions. To demonstrate the effectiveness of this approach,
we have included the results of our numerical experiments.

Index Terms— Video signal processing, optimization, gradient
methods, compressed sensing

1. INTRODUCTION

The latest advances in video reconstruction take advantage of the
assumption that the signal of interest (denoted f∗) is sparse or com-
pressible within some basis or representation. While this has been
widely known to hold for a variety of natural signals, studies in the
field of compressed sensing [1, 2] have provided substantial theo-
retical support that employing sparsity constraints in signal recon-
struction algorithms can lead to more accurate reconstructions [3].
In addition to sparsity, utilizing any additional information already
known about f∗ can assist in procuring increased accuracy in our
estimates with minimal changes in the overall computational cost
[4]. Recent advances have also indicated that using the correla-
tion between frames of a video, assuming that the changes between
frames is small, can also boost the accuracy of the reconstruction
[5]. In this paper, we account for the boundary constraints on f ,
i.e., bU ≥ f ≥ bL, where bU and bL correspond to the upper and
lower bounds on f respectively, while simultaneously incorporating
inter-frame correlation to provide even greater accuracy in our re-
constructions. This is accomplished through the development of a
gradient projection method that can efficiently and accurately solve
the constrained video reconstruction problem.

This work was supported by NSF Grant DMS-09-65711 and by the Uni-
versity of California Leadership Excellence Through Advanced Degrees pro-
gram.

2. PROBLEM FORMULATION

We will consider the problem of approximating a series of images
comprising a video {f∗

t }Tt=1 ∈ �n by observing the linear projec-
tion {yt}Tt=1 ∈ �m where ft is the t-th frame in a video that is
made up of T sequential images. This can be formulated as yt =
Atf

∗
t + ηt where At ∈ �mxn projects the image linearly onto a

m-dimensional set of observations and ηt ∈ �m is an error vec-
tor associated with sensor noise, quantization errors, etc. In [5], we
gave a detailed outline of applying gradient projection to solve two-
frame and four-frame non-negative �2 − �1 minimization problem.
In [4], we detailed how to impose additional constraints (as many
applications have maximum and minimum values of {f∗

t }) to the
single-frame �2 − �1 minimization problem. Here, we propose an
efficient solution to this �2 − �1 sparse video minimization problem
combining these two methods.

2.1. �2 − �1 Minimization

Through the use of an orthonormal basis W , we can create a sparse
(or mostly zeroes) vector {θ∗t } , where f∗

t =Wθ∗t . Common meth-
ods in current literature solve the following convex �2−�1 optimiza-
tion problem for each time frame t:

θ̂t ≡ argmin
θ∈�n

1

2
‖yt −AtWθt‖22 + τ‖θt‖1 (1)

subject to bU ≥Wθt ≥ bL

where τ > 0 is a regularization parameter and bU , bL ∈ �n are
the vectors of upper and lower bounds on {f∗

t } respectively. The
accuracy of our estimates can be improved by taking advantage of
the relationships between sequential frames, as described below.

2.2. Video Reconstruction

In a video where each frame changes only slightly from the previous
frame, the reconstruction of a frame is usually a good approximation
for the subsequent frame (i.e. f∗

t ≈ f∗
t+1 and therefore θ∗t ≈ θ∗t+1).

However, rather than solving for θ∗t and θ∗t+1, we solve for θ∗t and
Δθ∗t = θ∗t+1 − θ∗t , which will be much sparser than θ∗t+1. This
approach results in the coupled optimization problem:[

θ̂t
Δθ̂t

]
= argmin

θt,Δθt∈�n

1

2

∥∥∥∥[ yt
yt+1

]
−At,2W 2

[
θt
Δθt

]∥∥∥∥2

2

+τ1‖θt‖1 + τ2‖Δθt‖1
subject to bU ≥Wθt ≥ bL,

bU ≥W (θt +Δθt) ≥ bL (2)

where At,2=

[
At 0
0 At+1

]
, W 2=

[
W 0
W W

]
, and τ1, τ2>0.

We can extend this approach to solve multiple frames simultane-
ously. In previous work on videos, we observed that when we held
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constant the amount of processing time allotted per frame, the ac-
curacy generally increases with each additional frame processed [6].
It must be noted, however, that the improvement in accuracy dimin-
ishes when the size of the problem is such that very few reconstruc-
tion iterations are run within the allotted time.

3. BOUND CONSTRAINED GRADIENT PROJECTION

Solving the unconstrained �2 − �1 minimization problem (1) (or its
equivalent variants) can be done in various ways. Gradient Projec-
tion for Sparse Reconstruction (GPSR) is a method that performs
particularly well [7]. Here, we describe how this gradient projection
approach can be applied to solve a general upper and lower bounded
multi-frame optimization problem. In [4], we outlined in detail how
we apply gradient projection to solve the single-frame upper and
lower bounded �2−�1 minimization problem (1). In this section, we
describe our proposed method for efficiently solving for two frames
(2) simultaneously. We note that this approach can be extended to
systems with arbitrarily many frames.

3.1. Gradient Projection

To use gradient-based methods to solve (2), we decompose θt, Δθt
into there positive and negative components to reformulate the ob-
jective function so that it is differentiable: θt = ut − vt, Δθt =
Δut−Δvt, with ut, vt,Δut,Δvt ≥ 0 and uTt vt = ΔuTt Δvt = 0
so that ‖θt‖1 = �

T
n (ut+vt) and ‖Δθt‖1 = �

T
n (Δut+Δvt) where

�n ∈ �n is the n-vector of ones. We can now rewrite (2) as

argmin
ut,vt,Δut,Δvt∈�n

Φ(ut, vt,Δut,Δvt) (3)

subject to ut, vt,Δut,Δvt ≥ 0

bU ≥W (ut − vt) ≥ bL

bU ≥W (ut − vt +Δut −Δvt) ≥ bL

where the solution is givn by ût, v̂t,Δût,Δv̂t and where

Φ(ut, vt,Δut,Δvt) =
1

2

∥∥∥∥[ yt
yt+1

]
−At,2W 2

[
ut − vt

Δut −Δvt

]∥∥∥∥2

2

+τ1�
T
n (ut + vt) + τ2�

T
n (Δut +Δvt) (4)

The reconstruction is now given by f̂t = W (ût − v̂t), and f̂
(0)
t+1 =

W ((ût− v̂t)+(Δût−Δv̂t)) is used to initialize the next optimiza-
tion problem. We note that the penalty terms will naturally enforce
the conditions uTt vt = ΔuTt Δvt = 0.

We can simplify our notation by first letting ej,k be the row vec-
tor of length k with one in the first j entries and zero everywhere
else. Using the Kronecker product ⊗, we define the following:

W̃j = ej,2 ⊗
[
W −W ]

and Ĩj = ej,2 ⊗
[
I −I ]

.

We then let W̃ =
[
W̃1; W̃2

]
. and zt = [ut; vt; Δut; Δvt], where

W̃ ∈ �2nx4n and zt ∈ �4n. We can now write (3) compactly as

ẑt ≡ argmin
z∈�4n

1

2

∥∥∥∥[ yt
yt+1

]
−At,2W̃zt

∥∥∥∥2

2

+

[
τ1�2n

τ2�2n

]T
zt

subject to Czt ≥ d

where the resconstruction is given by
[
f̂t; f̂t+1

]
= W̃zt and where

C =
[
I4n; W̃1; −W̃1; W̃2; −W̃2

]
∈ �8nx4n

d = [04n; b2; b2] ∈ �8n, where b2 = [bL;−bU ]

We denote the feasible set by F ≡ {zt ∈ �4n : Czt − d ≥ 0}.

The two-step gradient projection method [8] defines its iterates

z
(k+1)
t from the previous iterate z

(k)
t by first projecting onto the fea-

sible set the vector defined by a steepest descent method:

z̄
(k)
t

(
α(k)

)
= P

(
z
(k)
t − α(k)∇Φ

(
z
(k)
t

))
, (5)

where P is the projection operator onto the feasible set and α(k) > 0
helps guarantee convergence. We then perform a linesearch along

this direction to obtain a suitable steplength v
(k)
t :

z
(k+1)
t = z

(k)
t + v

(k)
t

(
z̄
(k)
t

(
α(k)

)
− z

(k)
t

)
.

Our estimates to the coefficients are now defined as θ
(k+1)
t =

Ĩ1z
(k+1)
t and θ

(0)
t+1 = Ĩ2z

(k+1)
t .

For ease of notation, we drop the superscripts corresponding to
the iterates by denoting the current iterate zt. We define

zt (α) = zt − α∇Φ (zt) and z̄t (α) = P (zt − α∇Φ (zt)) .

Iterates defined in this manner guarantee the objective function will
decrease at each iteration: if zt is a feasible point and if z̄ is not a sta-
tionary point, then there exists a scalar ᾱ > 0 such that Φ (z̄t (α)) <
Φ (zt) for all α ∈ (0, ᾱ]; and zt is stationary if and only if z̄t (α) =
zt for all α ≥ 0 (see [8]).

3.2. Projecting Onto the Feasible Set

The projection of z̄ (α) onto the feasible set F is the closest point
z̄P (α) in the feasible set in Euclidean norm, i.e.,

z̄t (α) ≡ argmin
z∈�4n

π (z) =
1

2
‖z − zt (α)‖22 (6)

subject to Cz − d ≥ 0

The constraints on this minimization problem make it difficult to
solve. However, we can simplify this problem by considering its
dual. Specifically, the function L (z, μ) = 1

2
‖z − zt (α)‖22 −

μT (Czt − d) is the Lagrangian function L : �4nx8n → � with
Lagrange multipliers μ ∈ �

8n. The Lagrange dual function g :
�

8n → � is given by g (μ) = infz∈F L (z, μ). By looking at
∇zL (z, μ) = 0, we find that

z = zt (α) + CTμ. (7)

The dual associated with (6), which is subject to μ ≥ 0, is :

μ∗ ≡ argmax
μ∈�8n

g (μ) = −1

2

∥∥∥CTμ∥∥∥2

2
− μT (Cz̄ (α)− d) (8)

3.3. Duality Gap

In the primal problem (6), we note that the objective function π (z)
is convex and the constraints Czt ≥ d are affine. If we let b =
1
2
(bU + bL) , u = [W−1b]+, v = [−W−1b]+, then the feasible set

is non-empty. A weaker version of Slater’s condition (see [9], p.226)
has therefore been satisfied, implying that the duality gap is zero,
i.e. g (μ∗) = π (z̄t (α)). The solution to (6) can thus be defined as
z̄t (α) ≡ zt (α) + CTμ∗ by solving (8).
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3.4. Solving the Dual Problem

We partition μ as μ = [λ; ζ;ψ] where λ ∈ �4n, and ζ, ψ ∈ �2n.
The Lagrange multipliers λ, ζ, and ψ correspond to the constraints
zt ≥ 0, bU ≥ Wθt ≥ bL, and bU ≥ W (θt + Δθt) ≥ bL respec-
tively. The dual problem can now be equivalently written as :

arg min
λ,ζ,ψ

h (λ, ζ, ψ) ≡ 1

2

∥∥∥λ+
[
W̃1

T −W̃1

T
]
ζ

+
[
W̃2

T −W̃2

T
]
ψ + zt (α)

∥∥∥2

2

−1

2
‖zt (α)‖22 −

(
ζT + ψT

)
b2

subject to λ, ζ, ψ ≥ 0 (9)

It is worth noting that (9) has only bound constraints while (6) has
linear constraints which are generally more difficult to satisfy. We
can solve (9) using component-wise minimization, where each com-
ponent is obtained sequentially by treating the other components as
constant and taking the partial derivatives of h (λ, ζ, ψ) and set-
ting them equal to 0. We let ζ = [ζ1; ζ2] , ψ = [ψ1;ψ2] where
ζ1, ζ2, ψ1, ψ2 ∈ �n. Using the steps outlined in [4], which exam-
ines the first-order optimality conditions, we can show

λ(j) =
[
−
([

W̃1

T −W̃1

T
]
ζ(j−1)

+
[
W̃2

T −W̃2

T
]
ψ(j−1) + zt (α)

)]
+

ζ
(j)
1 =

1

2

[
−rjL

]
+
, ζ

(j)
2 =

1

2

[
−rjU

]
+

ψ
(j)
1 =

1

4

[
−sjL

]
+
, ψ

(j)
2 =

1

4

[
−sjU

]
+

where

rjL = +
[
2
(
ψ

(˜j)
1 − ψ

(˜j)
2

)
+ W̃1

(
λ(j) + zt (α)

)]
− bL

rjU = −
[
2
(
ψ

(˜j)
1 − ψ

(˜j)
2

)
+ W̃1

(
λ(j) + zt (α)

)]
+ bU

sjL = +
[
2
(
ζ
(j)
1 − ζ

(j)
2

)
+ W̃2

(
λ(j) + zt (α)

)]
− bL

sjU = −
[
2
(
ζ
(j)
1 − ζ

(j)
2

)
+ W̃2

(
λ(j) + zt (α)

)]
+ bU

3.5. Feasibility

At each dual problem iteration, an estimate for the primal prob-

lem iterates, θ
(k)
t and θ

(k)
t+1, can be shown to be feasible. If we let

μ(j− 1
3
) =

(
λ(j), ζ(j), ψ(j−1)

)
and z

(j− 1
3
)

t = zt (α) + CTμ(j− 1
3
)

from (7), then during the j− 1
3

iteration of the component-wise min-
imization, the primal variable associated with the dual variable is
feasible with respect to the constraints in (5):

Wθ
(j)
t = W̃2z

(j− 1
3
)

t = W̃2

(
zt (α) + CTμ(j− 1

3
)
)

=
[
W̃2

(
zt (α) + λ(j)

)
+ 2

(
ψ

(˜j)
1 − ψ

(˜j)
2

)]
+2

(
ζ
(j)
1 − ζ

(j)
2

)
= bL +

[
rjL

]
+
−

[
−rjU

]
+

We can also show that Wθ
(j)
t = bU +

[−rjL]+ − [
rjU

]
+

. Using

these equations, we can show that bU ≥ Wθ
(j)
t ≥ bL, i.e., the

iterates generated by this component-wise minimization approach
are feasible.

Additionally, at the end of the j-th iteration of the component-
wise minimization, we obtain a feasible estimate for initial value
θ
(0)
t+1 for the next optimization problem by the following: the primal

variable associated with the dual variable μ(j) =
(
λ(j), ζ(j), ψ(j)

)
,

is given by z
(j)
t = zt (α) + CTμ(j). By considering

Wθ
(0)
t+1 =

[
W̃1

(
zt (α) + λ(j)

)
+ 2

(
ζ
(j)
1 − ζ

(j)
2

)]
+4

(
ψ

(j)
1 − ψ

(j)
2

)
.

we can show that bU ≥Wθ
(0)
t+1 ≥ bL. Thus, by appropriately defin-

ing
(
θ
(j)
t , θ

(0)
t+1

)
within the above sequence of steps we can show that

our approximate solution will maintain feasibility at every iteration.

Finally, we note that the order in which the components λ(j),
γ(j), and ψ(j) of the Lagrange multipliers are computed is not
unique. Other permutations will also give feasible primal iterates
and will result in decreasing duality gaps. In our experience, how-
ever, the ordering we described in this section achieves smaller
duality gaps in fewer iterations.

4. NUMERICAL RESULTS

We compare the results of the LCGPk methods from [5] with non-
negative constraints to our proposed Linearly Constrained Gradient
Projection with arbitrary lower and upper bounds (LCGPk-UL) to
examine the effectiveness of our method, where k is the number
of frames solved simultaneously. We consider a video of a sig-
nature (in this case, of one of the authors) written electronically,
which occurs in many credit card and identity verification appli-
cations. The video consists of 50 frames of 128 x 256 gray-scale
frames (see Fig. 1(a)). We can reconstruct the video whose frames
have been blurred by noise (whether it be from faulty equipment
or data corruption) with an accurate approximation of the original
signature. The observations are created by passing the true video
{f∗
t }50t=1 through the optical blurring operationAt using the 2D blur

kernel hi,j = 1/(1 + i2 + j2), for i, j = −4, . . . , 4, which is the
same kernel used in [7]. We constrain the solution to lie between 0
and 255 which are the pixel intensity constraints. This video con-
tains regions of both significant darkness and brightness, making it
a useful test for our method. We have optimized the τ values to

yield the minimum root-mean-squared error ‖f − f̂‖2/‖f‖2 for the
last 30 frames, which is when the RMS of both methods have ap-
proximately reached a steady state. Table 1 shows the RMS for the
50th frame for LCGPk and LCGPk-UL, where k frames is solved
simultaneously with 3 seconds allotted per frame.

Method RMS(%) Method RMS(%)

LCGP2 3.681 LCGP2-UL 2.407
LCGP4 3.390 LCGP4-UL 2.908

Table 1. Reconstruction RMS for single-trial results and results av-

eraged over ten trials. RMS (f) ≡ ‖f − f̂‖2/‖f‖2. We note that
the LCGP2 and LCGP4 approaches only impose lower bound con-
straints, whereas the LCGP2-UL and LCGP4-UL approaches im-
pose both lower and upper bound constraints.

We notice that the LCGPk-UL method has a significantly lower
RMS than its LCGPk counterpart. In fact, LCGP2-UL has a lower
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(e)

(a) (b)

(c) (d)

Fig. 1. Results of our numerical experiments. Here we show (a) True intensity f∗ at 50th frame (b) the blurred observation y (c) the
reconstruction using LCGP2 (RMS = 3.681%), (d) the reconstruction with the proposed LCGP2-UL method (RMS = 2.407%) (e) RMS
evolution at each time frame.

RMS than LCGP2 on every frame, while LCGP4-UL shows a
lower RMS on 88% of the frames compared to LCGP4. Examin-
ing Fig.1(c) reveals the weakness of having no upper constraint;
intensity values rise above 340, far exceeding the natural limit of
255. The scale in Fig.1(c) is different from the other figures to em-
phasize (1) the significant overestimation of pixel intensity values
when an upper bound constraint is not imposed, and (2) the ring-
ing artifacts present in this reconstruction. The upper constraints
of the LCGPk-UL method help contain that, as seen in Fig.1(d).
Increasing the number of frames solved simultaneously but keeping
the time allotted constant causes each algorithm to perform fewer
reconstruction iterations, making the initial frames less accurate.
We note that the cursor ‘+’ at the tail end of the signature appears
blurry in the reconstruction. This is due to the fact that the cursor
is constantly moving in addition to the being blurry, which makes it
challenging to recover. In [5], it was noted that k = 4 was the cutoff
in increased accuracy; higher values of k resulted in insufficient
iterations in the allotted time. In our work, the optimal number of
frams to solve simultaneously is k = 2, as can be observed in Table
1. Thus, we have demonstrated that the general bound constrained
multi-frame method significantly outperforms the non-negative con-
strained method.

5. CONCLUSION

This paper presents the gradient projection method LCGPk-UL for
video reconstruction that simultaneously solves for multiple frames.
The accuracy of our reconstruction increases when we take advan-
tage of the correlation between frames and enforce both the sparsity
constraints and the upper/lower bound constraints (as opposed to just
non-negative constraints). We have demonstrated through a numeri-
cal experiment that the proposed LCGPk-UL can improve upon the
performance of currently available gradient projection methods. The
results also suggest that larger multi-frame methods can yield recon-
structions with increased accuracy by increasing the allotted time,

which involves only slightly more computational effort.
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