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Abstract— We study the problem of recovering the sparsity pat-
tern of block-sparse signals from noise-corrupted measurements.
A simple, efficient recovery method, namely, a block-version of
the orthogonal matching pursuit (OMP) method, is considered
in this paper and its behavior for recovering the block-sparsity
pattern is analyzed. We provide sufficient conditions under
which the block-version of the OMP can successfully recover
the block-sparse representations in the presence of noise. Our
analysis reveals that exploiting block-sparsity can improve the
recovery ability and lead to a guaranteed recovery for a higher
sparsity level. Numerical results are presented to corroborate our
theoretical claim.

Index Terms— Block-sparsity, orthogonal matching pursuit,
compressed sensing.

I. INTRODUCTION

In this paper, we consider the problem of recovering block-
sparse signals whose nonzero elements appear in fixed blocks.
Block-sparse signals arise naturally. For example, the atomic
decomposition of multi-band signals [1] or audio signals [2]
usually results in a block-sparse structure in which the nonzero
coefficients occur in clusters. Recovery of block-sparse signals
has been extensively studied in [3]–[5], in which the recovery
behaviors of the basis pursuit (BP), or �1-constrained QP,
and the orthogonal matching pursuit (OMP) algorithms were
analyzed via the restricted isometry property (RIP) [4], [5]
and the mutual coherence property [3]. Their analyses [3]–[5]
revealed that exploiting block-sparsity yields a relaxed condi-
tion which can guarantee recovery for a higher sparsity level
as compared with treating block-sparse signals as conventional
sparse signals. Nevertheless, most of these studies focused on
noiseless scenarios. In practice, measurements are inevitably
contaminated with noise and underlying uncertainties. It is
therefore important to analyze the effect of measurement noise
on the block-sparsity pattern recovery, e.g. under what condi-
tions the exact sparsity pattern can be recovered, and does
exploiting block-sparsity still lead to a guaranteed recovery
for a higher sparsity level? These questions will be addressed
in this paper. Specifically, we consider a block version of the
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OMP algorithm and study its behavior for recovering block-
sparsity pattern in the presence of noise. A comparison with
the theoretical results for the conventional OMP algorithm
[6] is presented to highlight the benefits of exploiting block-
sparsity property.

II. PROBLEM FORMULATION

We consider the problem of recovering a block-sparse signal
x ∈ R

n from noise-corrupted measurements

y = Ax+w (1)

where A ∈ R
m×n (m < n) is the measurement matrix with

unit-norm columns, and w is an arbitrary and unknown vector
of errors. To define block-sparsity, as in [3], we model x as a
concatenation of equal-length blocks

x = [xT
1 xT

2 . . . xT
L]

T (2)

where xl � [x(l−1)d+1 . . . xld]
T is a d-dimensional vector.

Clearly, the vector x has a dimension n = Ld, and the
vector is called block K-sparse if its block component xl has
nonzero Euclidean norm for at most K indices l. Similarly, the
measurement matrix A can be expressed as a concatenation
of column-block matrices {Al}Ll=1

A = [A1 A2 . . .AL] (3)

where Al ∈ R
m×d. Also, we assume that the number of

rows of A is an integer multiples of d, i.e. m = Rd
with R an integer. The conventional coherence metric of the
measurement matrix A is defined as

μ � max
i�=j

|aTi aj | (4)

where ai denotes the ith column of A. This coherence
metric, albeit useful, is not sufficient to characterize the block-
structure of the sparse signal. To exploit the block-sparsity
property, we define the block-coherence μB and sub-coherence
ν (these two concepts were firstly introduced in [3]):

μB �max
i,j �=i

1

d
ρ(AT

i Aj)

ν �max
l

max
i,j �=i

|aTi aj |, ai,aj ∈ Al (5)
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where ρ(X) denotes the spectral norm of X, which is defined
as the square root of the maximum eigenvalue of XTX, i.e.√
λmax(XTX). Related properties of the block-coherence μB

can be found in [3]. We see that μB quantifies the coherence
between blocks of A, while the coherence within blocks is
characterized by the sub-coherence ν.

The objective of this paper is to identify sufficient conditions
on the measurement matrix A (in terms of the block-coherence
μB and the sub-coherence ν), as well as the signal vector
x and the error vector w, under which the block-sparsity
pattern can be recovered from the noisy measurements. We
are particularly interested in analyzing the recovery ability of
a block-version of the orthogonal matching pursuit (OMP).
OMP is a simple greedy approximation algorithm developed
in [7], [8]. Despite its simplicity, OMP is a provably good
approximation algorithm which achieves performance close
to Lasso in certain scenarios [9], [10]. In the following, we
briefly summarize the block-version of the OMP, which is also
termed as block-OMP (BOMP). This BOMP is a slight variant
of the original BOMP that was introduced in [3] for noiseless
scenarios.

BOMP Algorithm:
1) Initialize the residual r0 = y, the index set S0 = ∅.
2) At the tth step (t ≥ 1), we choose the block that is best

matched to rt−1 according to

it = argmax
i

‖AT
i rt−1‖2 (6)

3) Augment the index set and the matrix of chosen blocks:
St = St−1 ∪{it} and Ψ(t) = [Ψ(t−1) Ait ]. We use the
convention that Ψ(0) is an empty matrix.

4) Solve a least squares problem to obtain a new signal
estimate xt = argminx ‖y −Ψ(t)x‖2

5) Calculate the new residual as rt = y − Ψ(t)xt = y −
P
Ψ(t)y, where P

Ψ(t) = Ψ(t)(Ψ(t))† is the orthogonal
projection onto the column space of Ψ(t), and † stands
for the pseudo-inverse.

6) If ‖rt‖2 ≥ ε, return to Step 2; otherwise stop.

III. BLOCK-SPARSITY PATTERN RECOVERY ANALYSIS

Let xnz denote a Kd dimensional column vector constructed
by stacking the nonzero block components xl, ∀{l|xl �= 0},
Anz ∈ R

m×Kd denote a submatrix of A constructed by con-
catenating the column-blocks Al, ∀{l|xl �= 0}, i.e. the blocks
corresponding to the nonzero xl, and let Az ∈ R

m×(L−K)d

stand for a submatrix of A constructed by concatenating the
column-blocks Al corresponding to zero xl. For notational
convenience, let I1 = {l1, l2, . . . , lK} denote a set of indices
for which xli �= 0, and I2 = {lK+1, lK+2, . . . , lL} denote a
set of indices for which xli = 0. Therefore we can write

xnz �
[
xT
l1

xT
l2

. . . xT
lK

]T

Anz �
[
Al1 Al2 . . . AlK

]

Az �
[
AlK+1

AlK+2
. . . AlL

]

The measurements can therefore be written as

y = Anzxnz +w (7)

We can decompose the error vector w into w = PAnzw +
P⊥
Anz

w, where PAnz = AnzA
†
nz denotes the orthogonal projec-

tion onto the subspace spanned by the columns of Anz, and
P⊥
Anz

= I − PAnz is the orthogonal projection onto the null
space of AT

nz. We can further write

y = Anzxnz +w =Anzxnz + PAnzw + P⊥
Anz

w

=Anz(xnz +A†
nzw) + P⊥

Anz
w

�Anzx̃nz + w̃ (8)

where x̃nz � xnz + A
†
nzw, and w̃ � P⊥

Anz
w. Equation (8)

decomposes the measurements into two mutually orthogonal
components: a signal component Anzx̃nz and a noise compo-
nent w̃. The reason for doing so is that even the exact signal
support (block-sparsity pattern) is known, there is no way to
separate the noise projection term A

†
nzw from the true signal

xnz. Hence it is more convenient to carry out our analysis
based on (8) instead of (7).

Our main results are summarized as follows.
Theorem 1: Let

ω � ‖AT w̃‖2,∞ = max
l

‖AT
l w̃‖2 (9)

denote the maximum correlation between the column block
Al and the residual noise component w̃. Let

xb,min � min
l∈I1

‖x̃l‖2 (10)

the minimum �2-norm of the non-zero signal block compo-
nents. Suppose that the following conditions are satisfied

(i) 1− (d− 1)ν − (2K − 1)dμB > 0

(ii)
[1− (d− 1)ν − (2K − 1)dμB]

2

1− (d− 1)ν − (K − 1)dμB
>

ω

xb,min
(11)

then we can guarantee that the BOMP algorithm selects indices
from I1 throughout the first K iterations. If the error tolerance
ε is chosen such that the algorithm stops at the end of iteration
K, then the BOMP recovers the exact block-sparsity pattern.

Proof: Proof is omitted here due to space limitations
but can be found in our full version manuscript (available at
http://arxiv.org/abs/1109.5430).

Theorem 1 is a generalization of the results presented in
[3] which considered block-sparse signal recovery from noise-
free measurements. To see this, for the noiseless case, we have
ω = 0, and hence the condition (11) is simplified as

1− (d− 1)ν − (2K − 1)dμB > 0 (12)

which is exactly the recovery condition provided in [3] for
block-sparse signal recovery. On the other hand, for the noisy
case, the success of the BOMP algorithm not only depends
on the block-coherence μB and the sub-coherence ν, but also
depends on the ratio of the maximum correlation (between the
column block Al and the residual noise component w̃) to the
minimum �2-norm of the nonzero signal block components
x̃l, ∀l ∈ I1. The importance of the minimum nonzero signal
component in sparsity pattern recovery has been highlighted
in [11], [12]. In particular, [11] showed that both the sufficient
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and necessary conditions require control of the minimum
nonzero signal component. Our result suggests that, for block-
sparse signal recovery, the minimum �2-norm of the nonzero
signal block components, instead of the minimum magnitude
of an entry, is the key quantity that controls the block subset
selection.

Also, we observe that the left-hand side of the second
condition in (11) is strictly less than one. Therefore the ratio
ω/xb,min cannot be greater than one, otherwise the condition
cannot be met, irrespective of the choice of the sub-coherence
ν and the block-coherence μB. The deterministic condition
(11), however, guarantees recovery of the sparsity pattern
under the worst-case scenario and therefore is very pessimistic.
If we take a probabilistic analysis (as in [13]) that ensures
a probabilistic recovery, the condition can be significantly
relaxed. This could be a direction of our future study.

IV. DISCUSSIONS

We note that in this paper, as in [3], block-sparsity is
explicitly exploited to yield a more relaxed condition imposed
on the measurement matrix, and therefore lead to a guaranteed
recovery for a potentially higher sparsity level. If the block-
sparse signal is treated as a conventional Kd-sparse vector
without exploiting knowledge of the block-sparsity structure,
sufficient conditions for exact sparsity pattern recovery using
OMP are given in [6, Theorem 18] and can be formulated as
(by combining the first and the third equation in [6, Theorem
18])

(i) 1− 2Kdμ > 0

(ii)
(1− 2Kdμ)2

1−Kdμ
>

‖AT w̃‖∞
xmin

(13)

where xmin denotes the minimum magnitude of the nonzero
signal elements in x̃nz. When d = 1, block-sparsity reduces
to conventional sparsity and we have ν = 0, μB = μ. The
condition (11) is simplified as

(i) 1− (2K − 1)dμ > 0

(ii)
(1− (2K − 1)dμ)2

1− (K − 1)dμ
>

‖AT w̃‖∞
xmin

(14)

which is the same as (13) except that 2K and K in the
numerator and denominator are replaced by 2K−1 and K−1,
respectively (It can be easily verified that (14) is slightly loose
than (13)). When d > 1, in the special case that the columns
of Al are orthonormal for each l, we have ν = 0 and therefore
the recovery condition (11) becomes

(i) 1− (2K − 1)dμB > 0

(ii)
[1− (2K − 1)dμB]

2

1− (K − 1)dμB
>

ω

smin
(15)

This recovery condition, (15), is less restrictive than (13) since
we have

[1− (2K − 1)dμB]
2

1− (K − 1)dμB
>
(1− 2KdμB)

2

1−KdμB

(a)

≥ (1− 2Kdμ)2

1−Kdμ

>
‖AT w̃‖∞

xmin

(b)

≥ ω

xb,min
(16)

where (a) comes from the fact that 1−2Kdμ > 0 and μB ≤ μ
[3, Proposition 2], (b) follows from ω ≤ √

d‖AT w̃‖∞ and
xb,min ≥ √

dxmin. We see that through exploiting the block-
sparsity, the sparsity pattern recovery condition is relaxed and
we can guarantee a recovery of sparsity pattern with a higher
sparsity level. A close examination of (16) reveals that this
improvement comes from two aspects. First, the measurement
matrix requires a less restrictive mutual coherence condition
since μB ≤ μ. Second, for the same signal, noise, and mea-
surement matrix, the quantity ω/xb,min is always smaller than
or equal to ‖AT w̃‖∞/xmin, meaning that exploiting block-
sparsity can improve the ability of detecting weak signals
buried in noise.

If the individual blocks Al are, however, not orthonormal,
then ν > 0, and ν has to be small in order to result in
a performance gain for block-sparsity recovery as compared
with the conventional sparse recovery. We can also follow
the orthogonalization approach [3] to analyze the general
non-orthonormal case. We orthogonalize the individual blocks
Al = ÃlVl, in which Ãl consists of orthonormal columns,
and Vl is an invertible matrix. The original dictionary can
therefore be written as A = ÃV, where V is a block-diagonal
matrix with blocks Vl. Clearly, orthogonalization preserves
the block-sparsity level. The comparison that is meaningful
here is between the recovery based on the original model
without exploiting block-sparsity and the recovery based on
the orthogonalized model taking block-sparsity into account.
For the orthogonalized dictionary Ã, we have ν(Ã) = 0.
Therefore we are only concerned about the relation between μ
before orthogonalization and μB after orthogonalization, which
are denoted by μ(A) and μB(Ã) respectively. Although an
exact relation between μ(A) and μB(Ã) is difficult to derive,
it has been shown in [3] that if d > RL/(L − R), then we
have μ(A) ≥ μB(Ã). Hence even for general dictionaries,
exploiting block-sparsity still leads to a guaranteed sparsity
pattern recovery for a potentially higher sparsity level by
properly choosing the number of measurements to satisfy
d > RL/(L−R).

V. NUMERICAL RESULTS

We present numerical results to illustrate the sparsity pattern
recovery performance of the BOMP algorithm. In the simula-
tions, the dictionary is randomly generated with each entry
independently drawn from Gaussian distribution with zero
mean and unit variance. We then normalize each column of the
dictionary to satisfy the unit-norm constraint. The dictionary
is divided into consecutive blocks of length d. The support
set of the block-sparse signal is randomly chosen according
to a uniform distribution, and the signals on the support set
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Fig. 1. Sparsity pattern recovery success rates of OMP and BOMP algorithms
vs. block sparsity level, m = 40, n = 400, d = 4, and L = 100.

are i.i.d. Gaussian random variables with zero mean and unit
variance. The measurement noise vector is randomly generated
with each entry drawn from Gaussian distribution with zero
mean and variance σ2

w.
To show the effectiveness of the BOMP algorithm, we

compare it with the OMP algorithm that does not take block-
sparsity into account. Fig. 1 shows the sparsity pattern recov-
ery success rate as a function of the block-sparsity level, K.
The sparsity pattern recovery is considered successful only
if the algorithm determines all the correct support indices in
the first K steps for the BOMP or in the first Kd steps for
the OMP, supposing the block-sparsity level, K, is known
a priori. The results are averaged over 1000 Monte Carlo
runs, with the dictionary, the signal, and the noise randomly
generated for each run. From Fig. 1, we observe that for both
the BOMP and the OMP algorithms, the success rate decreases
as the block-sparsity level, K, increases. Also, it can be seen
that the BOMP algorithm presents a significant performance
improvement over the OMP. The result corroborate our the-
oretical claim that exploiting block-sparsity can lead to an
improved recovery ability. Fig. 2 depicts the success rate of
the BOMP algorithm under different noise power levels. We
see that as the noise power increases, the recovery performance
degrades. This observation is quite intuitive and coincides with
our theoretical result since a higher noise power calls for a
stricter requirement on the measurement matrix in order to
satisfy the condition (11).

VI. CONCLUSION

We studied the problem of recovering the sparsity pattern
of block-sparse signals from noise-corrupted measurements.
Our results showed that even in the presence of noise, the
block-sparsity pattern can still be completely recovered via a
block-version of the OMP algorithm when certain conditions
are satisfied. Also, our analysis revealed that exploiting block-
sparsity can lead to a guaranteed recovery for a potentially
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Fig. 2. Sparsity pattern recovery success rate of BOMP algorithm vs. block
sparsity level, m = 40, n = 400, d = 4, and L = 100.

higher sparsity level. This theoretical claim was also corrob-
orated by our numerical results.
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