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Abstract—A novel expectation maximization based matching
pursuit (EMMP) algorithm is presented. The method uses the
measurements as the incomplete data and obtain the complete
data which corresponds to the sparse solution using an iterative
EM based framework. In standard greedy methods such as
matching pursuit or orthogonal matching pursuit a selected atom
can not be changed during the course of the algorithm even if the
signal doesn’t have a support on that atom. The proposed EMMP
algorithm is also flexible in that sense. The results show that the
proposed method has lower reconstruction errors compared to
other greedy algorithms using the same conditions.

Index Terms—sparse reconstruction, compressive sensing,
greedy methods, expectation maximization

I. INTRODUCTION

SPARSE signal representations and the theory of com-

pressive sensing (CS) [1], [2] has received considerable

attention in many research communities and has a wide

range of applications such as computational photography [3],

medical imaging [4], radar [5], [6], sensor networks [7] and

many more. The main application revolves around the classical

underdetermined linear regression problem:

y = Φx+ n (1)

where y ∈ �M and n ∈ �M are the measurement and noise

vectors of dimension M. Φ ∈ �M×N is the compressive

measurement matrix where M < N . x is the signal to be

reconstructed which can be represented with a basis Ψ as

x = Ψs. Here it is assumed that the signal is K sparse

meaning ||s||�0 = K and the goal is to obtain the most sparse

s that satisfies (1) among many solutions of (1).

CS shows that the sparse signal s, hence , x can be

recovered with very high probability from O(K log(N/K))
measurements by solving a convex �1 minimization problem

of the following form.

min||s||1 s.t. ||y −ΦΨs||2 < ε (2)

The problem in (2) is convex and the global optimal solution

is guaranteed. However, the computational complexity of (2)

is high and instead suboptimal greedy algorithms are also used

in many applications. Matching pursuit (MP) [8], orthogonal

matching pursuit (OMP) [9], compressive sampling matching
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pursuit (CoSamp) [10] iterative hard/soft thresholding (IHT)

[11] belong to these greedy algorithms. Most of these greedy

techniques work with selecting the mostly correlated columns

of the dictionary and when a wrong or unreliable dictionary

element (atom) is selected it can not be removed from the

list of selected atoms and these selections affect the selection

of following atoms resulting in a decrease of performance.

There are new variants of OMP that tries to find and remove

unreliable atoms [12] by backtacking and assigning reliability

to the previously chosen atoms.

This paper focuses on the same sparse signal recovery prob-

lem using an expectation maximization [13] (EM) framework.

The observed measurements y are actually the incomplete data

that is observed about the system. The complete observations

would be the measurements yi i = 1, 2, ...,K corresponding

to each sparsity element or atom. Note that the vector yi is not

the ith index of y, it represents the measurements if only the

ith support of the signal was present. The resultant algorithm

iteratively updates the measurements and the selected atom

indexes allowing removal of unreliable atoms. Variants of

the proposed EM-MP method that both requires and does

not require an estimate sparsity level to be known priori

are developed in the paper. The numerical simulation results

show that the proposed EMMP method has lower average

reconstruction errors in varying number of measurements or

signal to noise ratio (SNR) levels compared to standard greedy

techniques such as OMP or �1 minimization based basis

pursuit.

The paper is organized as follows. The EMMP algorithm is

explained in Section II. Simulation and test results are shown

in Section III. Conclusions are discussed in Section IV.

II. EXPECTATION MAXIMIZATION MATCHING PURSUIT

The sparse reconstruction problem for the linear system of

y = Φα can be written in the form of

y = [φ1φ2...φN ] [α1α2...αN ]T (3)

and y =
∑N

i=1 αiφi. A K-sparse solution means that only

K of the αi’s are nonzero. The matching pursuit algorithm

(MP) projects y to each column of Φ and select the atom that

has the largest correlation and removes that projection from

the measurements and iteratively continues the procedure until

the termination criteria is met. OMP adds a least squares step

where the measurements y is projected to the span of the

selected atoms at each step and residual is calculated using

least squares solution which prevents recurrent selection of

atoms.

Here we would like to make the observation that the

measurements y can be written as the summation of K mea-

surement vectors as y =
∑K

j=1 yj where each measurement
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vector is yj = αjφj . Here yj’s are not known or measured

but if we had known or could estimate them, then it would

be easy to find a one sparse solution in the linear system of

yj = Φx. Since yj’s are not directly measured but their sum

y is available about the system, y can be interpreted as the

incomplete data about the system and y1,y2, ...,yK can be

seen as the complete data. This interpretation guides us to

the well known expectation maximization (EM) framework to

obtain iteratively both the complete data yj j = 1, 2, ..K
and their corresponding supports. The proposed EM based

matching pursuit algorithm (EMMP) is summarized in Table

I.

TABLE I
EMMP ALGORITHM

Input:
Φ measurement matrix

y measurements

S sparsity level

ε termination criteria threshold

Initialization::
CD = 0 complete data matrix of size M × S
r = y residual vector

While loop, repeat until ||r||2 < ε
for i = 1 : S

Expectation:
ŷi = y −∑

j �=i(CD(:, j))

Maximization:
proj = ΦT ŷi

λ = argmax |proj|
p = Φ(:, λ)
yi = ppT ŷi

Keep and Update:
λL(i) = λ λ list

CD(:, i) = yi

end for loop

Calculate residual r = y −∑S
j=1 CD(:, i)

end while loop

Φ̂ = Φ(:, λL)
x = zeros(N, 1)

x(λL) = min ||y −∑S
j=1 x(λL(j))Φ̂(:, j)||2

Output: x solution vector

The proposed EMMP algorithm for solving a linear system

of y = Φx + n takes the measurement matrix Φ, the

measurements y, a given sparsity level S and a termination

parameter ε as the inputs of the algorithm. Here S denotes the

targeted sparsity level of the output solution. The effect of S

on algorithm performance and a new algorithm that doesn’t

require S a priori is explained in Section III. Here Table I

focuses on the main core of the EMMP algorithm.

EMMP algorithm starts with initialization of a complete

data matrix CD of size M × S where M is the number

of measurements. This matrix is initialized to zeros. Also

a residual vector r is initialized to r = y. The algorithm

continues until the norm of the residual vector r is less then

the input parameter ε. Until this termination criteria is met

expectation and maximization steps are calculated for each

complete data index. First the ith complete data component is

estimated in expectation step as ŷi = y − ∑
j �=i(CD(:, j)).

Here ŷi is the estimate of the ith complete data component at

the current iteration. In the maximization step ŷi is projected

on to the columns of Φ and the column p that gives the

highest correlation with ŷi is selected. The ith complete

data vector yi is obtained by projecting ŷi to p vector as

yi = ppT ŷi. The selected index list and the complete data

matrix is updated by the current index of the selected p
vector and the yi. This procedure is repeated S times for each

sparsity level until the termination criteria of the while loop

is met. There are various ways of terminating these types of

greedy methods, here only one possibility where �2 norm of

the residual is used. After each for loop the residual vector

is updated by r = y − ∑S
j=1 CD(:, i) and depending on

the norm of this residual vector the while loop is terminated.

The S sparse solution x can be reported as the least squares

solution to the selected columns of the Φ matrix. Next section

details the performance of the outlined algorithm under various

conditions compared to other sparse recovery methods.

III. SIMULATION RESULTS

In this section the average performance of the proposed

EMMP algorithm is analyzed and compared to CS and OMP

results. First the algorithms are tested for varying number of

measurements. A sparse signal of dimension N = 512 and

K = 10 and K = 20 sparsity levels are measured with a

measurement matrix Φ that is constructed randomly from the

normal distribution. The number of measurements M is varied

from 5 to 500. A white gaussian noise corresponding to signal

to noise ratio (SNR) of 5dB is added to the measurements.

The system is solved with CS (Eq. (2)), OMP and EMMP

methods and the error norm between the constructed signals

and the true signal is calculated. An oracle result that a

priori knows the indexes of the nonzero components in the

result is also calculated. This procedure is repeated for each

measurement number 50 times with random sparse signals,

random measurement matrices and random noise realizations

each time. Figure 1(a,b) shows the average �2 norm error for

the tested algorithms for K = 10 and K = 20 sparsity levels

respectively.

Both results in Fig. 1 show that the average reconstruction

error for the proposed EMMP algorithm is lower than the com-

pared CS and OMP algorithms for high enough measurements.

It is also important to note that the EMMP method archives

the performance of the oracle result after some measurement

number level where both CS and OMP have an error offset

compared to oracle result. Increasing the sparsity level of

the signal increases the required number of measurements

for achieving lower reconstruction errors. For all methods

including EMMP, doubling the sparsity level nearly doubled

the required number of measurements which is an expected

result consistent with the information that the required number
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Fig. 1. (a) Average �2 norm error vs. compressive measurement number for
the tested CS, OMP, EMMP and oracle results for sparsity levels (a) K = 10
and (b) K = 20

of measurements is linearly dependent to the sparsity level of

the signal. EMMP also follows this rule.

The results in Fig. 1 compare algorithm performances under

a single SNR for varying number of measurements. It is also

important to see the performance under various noise levels.

To obtain the noise performance of the algorithm a sparse

signal of dimension N = 512 and sparsity level K = 20 is

measured with M = 200 compressive measurements. Again a

random gaussian measurement matrix is used. WGN with SNR

levels changing from -10 to 20 dB are tested. For each SNR

level a new random sparse signal, with random measurement

matrix and noise realizations are generated and this procedure

is repeated 50 times. Figure 2 shows the average �2 norm error

between the reconstructed signal and the true signal for CS,

OMP, EMMP and oracle cases.

It can be seen from Fig. 2 that the EMMP has lower error

values compared to OMP for nearly all SNR values. EMMP

algorithm achieves the performance of the oracle at an SNR

of 3 dB, while OMP achieves it nearly at an SNR level of

9 dB which shows a 6 dB SNR gain in performance. CS result

shows slightly better performance in very low SNR regime

compared to both OMP and EMMP but the error rates for all

the algorithms in low SNR regime is high and reconstructed

signals are in average not very close to the true signals.
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Fig. 2. Average �2 norm error vs. SNR for the tested CS, OMP, EMMP and
oracle results

In the SNR regime where algorithms start to produce true

reconstructions proposed EMMP algorithm outperforms the

compared methods.

One of the important parameters of the EMMP algorithm is

the S parameter controlling the sparsity level of the solution.

To analyze the effect of this parameter a sparse signal with

sparsity level K = 20 is randomly chosen and M = 100
measurements with a random gaussian measurement matrix

are generated. An SNR level of 10dB is used. The sparse signal

is reconstructed with the EMMP algorithm using S = K − 3,

S = K and S = K + 3. Hence lower, upper and correct

number of sparsity levels are tested. The reconstructed and the

true signals for each case are shown in Fig. 3(a-c) respectively.
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Fig. 3. True and reconstructed signals with EMMP algorithm when true
sparsity is K = 20 and the sparsity level in EMMP is used as (a) S = 17, (b)
S = 20 and (c) S = 23. (d) True and reconstructed signal with the updated
EMMP algorithm that doesn’t require an S parameter as an input.

Figure 3(a) shows that using a sparsity level S that is

less than the true sparsity of the signal in EMMP creates

a result where S of the K true nonzero signal components

are reconstructed. Hence a best S sparse representation of the
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signal is found. Using less sparsity level doesn’t create nonzero

components outside the support of the signal which is very

important. In Fig. 3(b) sparsity level S is taken as same as K

and the signal is correctly reconstructed. If S overshoots K, as

in Fig. 3(c) still all support of the signal is correctly found but

only one wrong nonzero component is reconstructed although

S = K + 3 is used. Figure 3(d) is a result of an updated

EMMP algorithm where no sparsity level S is required to be

given as an input parameter. It is seen that the EMMP method

creates the sparse signal correctly as in Fig. 3(b) without using

an S parameter in the algorithm.

The updated EMMP algorithm can be basically summarized

as follows. The EMMP algorithm is run with an S parameter

starting from S = 1 and if the condition can not be satisfied

for that S level within a fair amount of iterations then S

parameter is increased and the EMMP algorithm is run again

for the current S level. The iteration is stopped when the

termination criteria is satisfied. By this way, EMMP searches

for solutions with increasing sparsity and stops at the lowest

sparsity level that it could satisfy the termination criteria. To

analyze the performance of the updated EMMP algorithm a

K = 20 sparse signal of dimension N = 512 is measured with

varying number of measurements from 10 to 500. An SNR of

10dB is used. The sparse signal is reconstructed with EMMP,

updated EMMP, and OMP methods. This procedure is repeated

50 times and the true reconstruction numbers are counted. A

sample reconstruction is counted as true if the reconstructed

signal satisfies the error condition i.e., ||Φ ∗ x− y|| < ε, it is

a K or less sparse signal and the support set of the signal is

not outside of the true signal support set. Figure 4 shows the

true reconstruction performance of all the algorithms. It van

be observed that both EMMP and updated EMMP algorithms

perform similar and perform with higher true reconstruction

rates compared to OMP method.
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Fig. 4. True reconstruction ratio vs the used number of compressive measure-
ments for the tested OMP, EMMP and updated EMMP algorithms.

IV. CONCLUSIONS

This paper presented a novel expectation maximization

based matching pursuit (EMMP) algorithm for sparse recovery

in underdetermined linear system of equations. The proposed

method treats the measurements as the incomplete data about

the system and estimates the complete data corresponding to

each support index with an iterative EM type algorithm. It

is observed that the proposed EMMP method perform recon-

struction with lower average reconstruction errors compared

to CS and OMP algorithms.

REFERENCES

[1] D. Donoho, “Compressed sensing,” IEEE Trans. Information Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[2] E. Candes, J. Romberg, and T. Tao, “Robust uncertanity principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Information Theory, vol. 52, pp. 489–509, 2006.

[3] M. D. ad M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and
R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE
Signal Processing Magazine, vol. 25, no. 2, pp. 83–91, 2008.

[4] M. Lustig, D. Donoho, and J. Pauly, “Sparse MRI: The application of
compressed sensing for rapid MR imaging,” Magnetic Resonance in
Medicine, vol. 58, no. 6, pp. 1182–1195, Dec. 2007.

[5] V. Patel, G. Easley, D. H. Jr., and R. Chellappa, “Compressed synthetic
aperture radar,” IEEE Journal of Selected Topics in Signal Processing,
vol. 4, no. 2, pp. 244–254, 2010.

[6] A. C. Gurbuz, J. H. McClellan, and W. R. Scott Jr., “A compressive
sensing data acquisition and imaging method for stepped frequency
gprs,” IEEE Trans. Signal Processing, vol. 57, no. 7, pp. 2640–2650,
2009.

[7] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, “Compressive wireless
sensing,” in Int. Conf. on Information Processing in Sensor Networks
(IPSN), April 2006, pp. 134 – 142.

[8] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictio-
naries,” IEEE Trans. Signal Processing, vol. 41, 1993.

[9] J. Tropp and A. Gilbert, “Signal recovery from random measurements
via orthogonal matching pursuit,” IEEE Trans. Information Theory,
vol. 53, no. 12, pp. 4655–4666, Dec. 2007.

[10] D. Needell and J. A. Tropp, “Cosamp: Iterative signal recovery from
incomplete and inaccurate samples,” Appl. Comp. Harmonic Anal., arXiv
math.NA 0803.2392, 2008.

[11] T. Blumensath and M. E. Davies, “Iterative hard thresholding for
compressed sensing,” preprint, 2008.

[12] H. Huang and A. Makur, “Backtracking-based matching pursuit method
for sparse signal reconstruction,” IEEE Signal Processing Letters,
vol. 18, p. 7, 2011.

[13] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from
incomplete data via the em algorithm,” Journal of the Royal Statistical
Societys Series B (Methodological), vol. 39, no. 1, pp. 1–38, 1977.

3316


