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ABSTRACT
In this paper, we propose a support driven reweighted �1
minimization algorithm (SDRL1) that solves a sequence of

weighted �1 problems and relies on the support estimate accu-

racy. Our SDRL1 algorithm is related to the IRL1 algorithm

proposed by Candès, Wakin, and Boyd. We demonstrate that

it is sufficient to find support estimates with good accuracy

and apply constant weights instead of using the inverse coef-

ficient magnitudes to achieve gains similar to those of IRL1.

We then prove that given a support estimate with sufficient

accuracy, if the signal decays according to a specific rate,

the solution to the weighted �1 minimization problem results

in a support estimate with higher accuracy than the initial

estimate. We also show that under certain conditions, it is

possible to achieve higher estimate accuracy when the inter-

section of support estimates is considered. We demonstrate

the performance of SDRL1 through numerical simulations

and compare it with that of IRL1 and standard �1 minimiza-

tion.

Index Terms— Compressed sensing, iterative algo-

rithms, weighted �1 minimization, partial support recovery

1. INTRODUCTION

Compressed sensing is a relatively new paradigm for the ac-

quisition of signals that admit sparse or nearly sparse repre-

sentations using fewer linear measurements than their ambi-

ent dimension [1, 2].

Consider an arbitrary signal x ∈ R
N and let y ∈ R

n be

a set of measurements given by y = Ax + e, where A is a

known n × N measurement matrix, and e denotes additive

noise that satisfies ‖e‖2 ≤ ε for some known ε ≥ 0. Com-

pressed sensing theory states that it is possible to recover x
from y (given A) even when n � N , that is, using very few

measurements. When x is strictly sparse—i.e., when there

are only k < n nonzero entries in x—and when e = 0, one

may recover an estimate x̂ of the signal x by solving the con-

strained �0 minimization problem

minimize
u∈RN

‖u‖0 subject to Au = y. (1)
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However, �0 minimization is a combinatorial problem and

quickly becomes intractable as the dimensions increase. In-

stead, the convex relaxation

minimize
u∈RN

‖u‖1 subject to ‖Au− y‖2 ≤ ε (BPDN)

also known as basis pursuit denoise (BPDN) can be used to

recover an estimate x̂. Candés, Romberg and Tao [2] and

Donoho [1] show that (BPDN) can stably and robustly re-

cover x from inaccurate and what appears to be “incomplete”

measurements y = Ax + e if A is an appropriate measure-

ment matrix, e.g., a Gaussian random matrix such that n �
k log(N/k). Contrary to �0 minimization, (BPDN) is a con-

vex program and can be solved efficiently. Consequently, it

is possible to recover a stable and robust approximation of x
by solving (BPDN) instead of (1) at the cost of increasing the

number of measurements taken.

Several works in the literature have proposed alternate al-

gorithms that attempt to bridge the gap between �0 and �1
minimization. These include using �p minimization with 0 <
p < 1 which has been shown to be stable and robust under

weaker conditions than those of �1 minimization, see [3, 4,

5]. Weighted �1 minimization is another alternative if there

is prior information regarding the support of the signal to-be-

recovered as it incorporates such information into the recov-

ery by weighted basis pursuit denoise (w-BPDN)

minimize
u

‖u‖1,w subject to ‖Au− y‖2 ≤ ε, (w-BPDN)

where w ∈ [0, 1]N and ‖u‖1,w :=
∑

i wi|ui| is the weighted

�1 norm (see [6, 7, 8]). Yet another alternative, the itera-
tive reweighted �1 minimization (IRL1) algorithm proposed

by Candès, Wakin, and Boyd [9] and studied by Needell [10]

solves a sequence of weighted �1 minimization problems with

the weights w
(t)
i ≈ 1/

∣∣∣x(t−1)
i

∣∣∣, where x
(t−1)
i is the solution

of the (t− 1)th iteration and w
(0)
i = 1 for all i ∈ {1 . . . N}.

In this paper, we propose a support driven iterative

reweighted �1 (SDRL1) minimization algorithm that uses

a small number of support estimates that are updated in every

iteration and applies a constant weight on each estimate. The

algorithm, presented in section 2, relies on the accuracy of

each support estimate as opposed to the coefficient magni-

tude to improve the signal recovery. While we still lack a

proof that SDRL1 outperforms �1 minimization, we present

two results in section 3 that motivate SDRL1 and could lead
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towards such a proof. First, we prove that if x belongs to a

class of signals that satisfy certain decay conditions and given

a support estimate with accuracy larger than 50%, solving a

weighted �1 minimization problem with constant weights is

guaranteed to produce a support estimate with higher accu-

racy. Second, we show that under strict conditions related

to the distribution of coefficients in a support estimate, it is

possible to achieve higher estimate accuracy when the in-

tersection of support estimates is considered. Finally, we

demonstrate through numerical experiments in section 4 that

the performance of our proposed algorithm is similar to that

of IRL1.

Notation: For a vector x ∈ R
N and set Λ ⊂ {1 . . . N}, xk

and x|k refer to the largest k entries of x, x(k) is the kth

largest entry of x, xΛ refers to the entries of x indexed by Λ,

and x(t) is the vector x at interation t

2. ITERATIVE REWEIGHTED �1 MINIMIZATION

In this section, we give an overview of the IRL1 algorithm,

proposed by Candès, Wakin, and Boyd [9] and present our

proposed support driven reweighted �1 (SDRL1) algorithm.

2.1. The IRL1 algorithm

IRL1 algorithm solves a sequence of (w-BPDN) problems

where the weights are chosen according to wi =
1

|x̃i|+a . Here

x̃i is an estimate of the signal coefficient at index i (from the

previous iteration) and a is a stability parameter. The choice

of a affects the stability of the algorithm and different vari-

ations are proposed for the sparse, compressible, and noisy

recovery cases. The algorithm is summarized in Algorithm 1.

Algorithm 1 IRL1 algorithm [9]

1: Input y = Ax+ e
2: Output x(t)

3: Initialize w
(0)
i = 1 for all i ∈ {1 . . . N}, a

t = 0, x(0) = 0
4: while ‖x(t) − x(t−1)‖2 ≤ Tol‖x(t−1)‖2 do
5: t = t+ 1
6: x(t) = argmin

u
‖u‖1,W s.t. ‖Au− y‖2 ≤ ε

7: wi =
1

|x̃i|+a

8: end while

The rationale behind choosing the weights inversely pro-

portional to the estimated coefficient magnitude comes from

the fact that large weights encourage small coefficients and

small weights encourage large coefficients. Therefore, if the

true signal were known exactly, then the weights would be set

equal to wi =
1

|xi| . Otherwise, weighting according to an ap-

proximation of the true signal and iterating was demonstrated

to result in better recovery capabilities than standard �1 min-

imization. In [10], the error bounds for IRL1 were shown

to be tighter than those of standard �1 minimization. How-

ever, aside from empirical studies, no provable results have

yet been obtained to show that IRL1 outperforms standard �1.

2.2. Support driven reweighted �1 (SDRL1) algorithm

In [8], we showed that solving the weighted �1 problem with

constant weights applied to a support estimate set T̃ has better

recovery guarantees than standard �1 minimization when the

T̃ is at least 50% accurate. Moreover, we showed in [11] that

using multiple weighting sets improves on our previous re-

sult when additional information on the support estimate ac-

curacy is available. Motivated by these works, we propose

the SDRL1 algorithm (Algorithm 2), a support driven itera-

tive reweighted �1 minimization algorithm, which identifies

two support estimates that are updated in every iteration and

applies constant weights on these estimates. The SDRL1 al-

gorithm relies on the support estimate accuracy as opposed to

the coefficient magnitude.

Algorithm 2 Support driven reweighted �1 (SDRL1) algo-

rithm.
1: Input y = Ax+ e
2: Output x(t)

3: Initialize p̂ = 0.99, k̂ = n log(N/n)/2,

ω1 = 0.5, ω2 = 0, Tol, T1 = ∅, Ω = ∅,

t = 0, s(0) = 0, x(0) = 0
4: while ‖x(t) − x(t−1)‖2 ≤ Tol‖x(t−1)‖2 do
5: t = t+ 1
6: Ω = supp(x(t−1)|s(t−1)) ∩ T1

7: Set the weights equal to

wi =

{
1, i ∈ T c

1 ∩ Ωc

ω1, i ∈ T1 ∩ Ωc

ω2, i ∈ Ω

8: x(t) = argmin
u

‖u‖1,w s.t. ‖Au− y‖2 ≤ ε

9: l = min
Λ

|Λ| s.t. ‖x(t)
Λ ‖2 ≥ p̂‖x(t)‖2,

10: T1 = supp(x(t)|s(t)), where s(t) = min{l, k̂}
11: end while

Note that we use two empirical parameters to control the

size of the support estimate T1. The first parameter k̂ approx-

imates the minimum sparsity level recoverable by (BPDN).

The second parameter l is the number of largest coefficients

of x(t) that contribute an ad hoc percentage p̂ of the signal

energy. The size of T1 is set equal to the minimum of k̂ and l.

3. MOTIVATING THEORETICAL RESULTS

The SDRL1 algorithm relies on two main premises. The first

is the ability to improve signal recovery using a sufficiently

accurate support estimate by solving a weighted �1 minimiza-

tion problem with constants weights. The second is the in-

tersection set of two support estimates has at least the higher

accuracy of either set.

Let x ∈ R
N be an arbitrary signal and suppose we collect

n � N linear measurements y = Ax, A ∈ R
n×N where n

is small enough (or k is large enough) that it is not possible
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to recover x exactly by solving (BPDN) with ε = 0. Denote

by x̂ the solution to (BPDN), and by x̂ω the solution to (w-

BPDN) with weight ω applied to a support estimate set T̃ .

Let xk be the best k-term approximation of x and denote by

T0 = supp(xk) the support set of xk.

Proposition 3.1. Suppose that T̃ is of size k with accuracy
(with respect to T0) α0 = s0

k for some integer k/2 < s0 <
k. If A has the restricted isometry property (RIP) with con-
stant δ(a+1)k < a−γ2

a+γ2 for some a > 1 and γ = ω + (1 −
ω)

√
2− 2α0, and if there exists a positive integer d1 such

that

|x(s0 + d1)| ≥ (ωη+1)‖xT c
0
‖1 +(1−ω)η‖xT c

0∩˜T c‖1, (2)

where η = ηω(α0) is a well behaved constant, then the set
S = supp(xs0+d1) is contained in Tω = supp(x̂ω

k ).

Remark 3.1.1. The constant ηω(α) is given explicitly by

ηω(α) =
2
(√

1 + δak +
√
a
√

1− δ(a+1)k0

)

√
a
√

1− δ(a+1)k − (ω + (1− ω)
√
2− 2α)

√
1 + δak

.

Proof outline. The proof of Proposition 3.1 is a direct exten-

sion of our proof of Proposition 3.2 in [11]. In particular, we

want to find the conditions on the signal x and the matrix A
which guarantee that the set S = supp(xs0+d1) is a subset of

Tω = supp(x̂ω
k ). This is achieved when x̂ω satisfies

min
j∈S

|x̂ω(j)| ≥ max
j∈T c

ω

|x̂ω(j)|. (3)

Since A has RIP with δ(a+1)k < a−γ2

a+γ2 , it has the Null Space

property (NSP) [12] of order k, i.e., for any h ∈ N (A), Ah =

0, then ‖h‖1 ≤ c0‖hT c
0
‖1, with c0 = 1 +

√
1+δak√

a
√

1−δ(a+1)k

.

Define h = x̂ω − x, then h ∈ N (A) and one can show that

‖h‖1 ≤ η
(
ω‖xT c

0
‖1 + (1− ω)‖xT c

0∩˜T c‖1
)

(4)

In other words, (w-BPDN) is �1-�1 instance optimal with

these error bounds. The proof of this fact is a direct extension

of the �1-�1 instance optimality of (BPDN) as shown in [12]

and we omit the details here. Next, we rewrite (4) as

‖hT0
‖1 ≤ (ωη+1)‖xT c

0
‖1 +(1−ω)η‖xT c

0∩˜T c‖1 −‖x̂ω
T c
0
‖1.

To complete the proof, we make the following observations:

(i) min
j∈S

|x̂ω(j)| ≥ min
j∈S

|x(j)| −max
j∈S

|x(j)− x̂ω(j)|,
(ii) ‖x̂ω

T c
0
‖1 ≥ maxj∈T c

ω
|x̂ω(j)|

which after some manipulations –see [11], proof of Prop. 3.2

for details of a similar calculation in a different setting– imply

min
j∈S

|x̂ω(j)| ≥ maxj∈T c
ω
|x̂ω(j)|+min

j∈S
|x(j)|

−(ωη + 1)‖xT c
0
‖1 + (1− ω)η‖xT c

0∩˜T c‖1.
(5)

Finally, we observe from (5) that (3) holds, i.e., S ⊆ Tω , if

|x(s0 + d1)| ≥ (ωη + 1)‖xTc
0
‖1 + (1− ω)η‖xTc

0∩ ˜Tc‖1.

Proposition 3.1 shows that if the signal x satisfies condi-

tion (2) and s0
k > 0.5, then the support of the largest k coeffi-

cients of x̂ω contains at least the support of the largest s0+d1
coefficients of x for some positive integer d1.

Next we present a proposition where we focus on an ide-

alized scenario: Suppose that the events Ei := {i ∈ T}, for

i ∈ {1, . . . , N} and T ⊆ {1, . . . , N}, are independent and

have equal probability with respect to an appropriate discrete

probability measure P. In this case, we show below, that the

accuracy of Ω = T̃ ∩Tω is at least as high as the higher of the

accuracies of T̃ and Tω . For simplicity, we use the notation

P(T0|T̃ ) to denote P(i ∈ T0|i ∈ T̃ ).

Proposition 3.2. Let x be an arbitrary signal in R
N and de-

note by T0 the support of the best k-term approximation of x.
Let the sets T̃ and Tω be each of size k and suppose that T̃
and Tω contain the support of the largest s0 and s1 > s0 coef-
ficients of x, respectively. Define the set Ω = T̃ ∩Tω . Given a
discrete probability measure P, the events Ei := {i ∈ T}, for
i ∈ {1, . . . , N} and T ⊆ {1, . . . , N}, are independent and
equiprobable. Then, for ρ := P(Tω|T̃ ) ≥ s0

k , the accuracy of
the set Ω is given by

P(T0|Ω) = 1
ρ
s0
k .

Proof outline. The proof follows directly using elementary

tools in probability theory. In particular, we have P(T0|T̃ ) =
s0
k , and P(T0|Tω) = s1

k . Define ρ = P(Tω|T̃ ) ≥ s0
k , it is

easy to see that P(T0 ∩ T̃ |T0 ∩ Tω) =
s0
s1

which leads to

P(T0 ∩ Ω) = P(T0 ∩ Tω)P(T0 ∩ T̃ |T0 ∩ Tω) =
s1
N

s0
s1

= s0
N .

Consequently, P(T0|Ω) = P(T0∩Ω)

P(Tω|˜T )Pr(˜T )
= s0/N

ρ(k/N) = 1
ρ
s0
k .

Proposition 3.2 indicates that as Pr(Tω|T̃ ) → s0
k , then

Pr(T0|Ω) → 1. Therefore, when x satisfies (2) it could be

beneficial to solve a weighted �1 problem where we can take

advantage of the possible improvement in accuracy on the set

T̃ ∩ Tω . Finally, we note that there are more complex depen-

dencies between the entries of T̃ and Tω of Algorithm 2 for

which Proposition 3.2 does not account.

4. NUMERICAL RESULTS

We tested our SDRL1 algorithm by comparing its perfor-

mance with IRL1 and standard �1 minimization in recovering

synthetic signals x of dimension N = 2000. We first recover

sparse signals from compressed measurements of x using ma-

trices A with i.i.d. Gaussian random entries and dimensions

n × N where n ∈ {N/10, N/4, N/2}. The sparsity of the

signal is varied such that k/n ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. To

quantify the reconstruction performance, we plot in Figure

1 the percentage of successful recovery averaged over 100

realizations of the same experimental conditions. The figure

shows that both the proposed algorithm and IRL1 have a

comparable performance which is far better than standard �1
minimization.
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Fig. 1. Comparison of the percentage of exact recovery of sparse signals between the proposed SDRL1 algorithm, IRL1 [9],

and standard �1 minimization. The signals have an ambient dimension N = 2000 and the sparsity and number of measurements

are varied. The results are averaged over 100 experiments.
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Fig. 2. Histogram of the ratio of the mean squared error (MSE) between the proposed SDRL1 and IRL1 [9] for the recovery of

compressible signals. The signals x follow a power law decay such that |xi| = ci−p, for constant c and exponent p.

Next, we generate compressible signals with power law

decay such that x(i) = ci−p for some constant c and de-

cay power p. We consider the case where n/N = 0.1 and

the decay power p ∈ {1.1, 1.5, 2} and plot the ratio of the

reconstruction error of SDRL1 over that of IRL1. Figure 2

shows the histograms of the ratio for 100 experiments each.

Note that a ratio smaller than one means that our algorithm

has a smaller reconstruction error than that of IRL1. The his-

tograms indicate that both algorithms have a comparable per-

formance for signals with different decay rates.
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[11] H. Mansour and Ö. Yılmaz, “Weighted �1 minimization with

multiple weighting sets,” in SPIE, Wavelets and Sparsity XIV,

August 2011.

[12] A. Cohen, W. Dahmen, and R. DeVore, “Compressed sens-

ing and best k-term approximation,” Journal of the American
Mathematical Society, vol. 22, no. 1, pp. 211–231, 2009.

3312


