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ABSTRACT

We revisit the well-known problem of boolean group testing
which attempts to discover a sparse subset of faulty items in a
large set of mostly good items using a small number of pooled
(or grouped) tests. This problem originated during the second
World War, and has been the subject of active research during
the 70’s, and 80’s. Recently, there has been a resurgence of
interest due to the striking parallels between group testing and
the now highly popular field of compressed sensing. In fact,
boolean group testing is nothing but compressed sensing in a
different algebra – with boolean ‘AND’ and ‘OR’ operations
replacing vector space multiplication and addition. In this
paper we review existing solutions for non-adaptive (batch)
group testing and propose a linear programming relaxation
solution, which has a resemblance to the basis pursuit algo-
rithm for sparse recovery in linear models. We compare its
performance to alternative methods for group testing.

Index Terms— group testing, compressed sensing, LP re-
laxation

1. INTRODUCTION

One incarnation of the group testing problem known to many
readers is the job interview puzzle of detecting a few fake
coins using the smallest number of weightings with a scale.
However, group testing also has a number of serious applica-
tions, ranging from blood screening of large groups of sub-
jects (which is in fact the original motivation considered by
Dorfman and Rosenblatt [1]), to computational biology, fault
discovery in computer networks, and others [2].

In the context of boolean group testing, a pooled test com-
bines some subset of the subjects in question and answers
whether any of them are faulty (infected). We will focus on
the non-adaptive version of the problem where all the tests are
administered at the same time, without the ability to use the
results of some tests to affect the selection of the other tests.

The main questions of interest in non-adaptive group test-
ing are the characterization of the minimum number of tests
that are required to find K faulty subjects out of the total set
of N , and the design of optimal pooling matricesA which en-
code the set of tests: non-zero elements in row i of the matrix

encode the subjects participating in test i. A large body of lit-
erature characterizes upper and lower bounds on the number
of tests in noiseless and noisy group testing, with both com-
binatorial and random designs of the matrices. In particular, a
set of information theoretic bounds for group testing with ran-
dom designs was established by Malyutov and his coworkers
[3, 4, 5]. Very recently these bounds were independently re-
discovered 1 after 30 years and extended in [6, 7].

The recent revival of interest in group testing came from
the active research area of compressed sensing (CS), where
the goal is to infer a sparse high-dimensional vector from a
small set of linear measurements. Compressed sensing is set
in the context of real vector spaces with additive noise, while
group testing studies the same problem in the boolean setting
and with Bernoulli noise. These recent works on group test-
ing drew parallels with CS, and bounds on performance were
established which also parallel the related bounds in CS. In
addition, a few tractable approximation algorithms were pro-
posed for group testing, including a belief propagation solu-
tion [7], and matching-pursuit-like solutions [8].

In this paper we describe a simple linear programming
(LP) relaxation for both the noiseless and the noisy non-
adaptive group testing problem, and compare its performance
with alternative solution methods2. An initial study of LP
for the noiseless boolean model appeared in [9]. In Sections
1 and 2 we set up the notation and describe some existing
bounds for group testing. We describe the LP relaxation in
Section 3, and present simulation results in Section 4.

2. COMBINATORIAL GROUP TESTING

Suppose we have a boolean vector x ∈ {0, 1}N , with only a
small number K of entries which are non-zero. We will also
call these non-zero items ’faulty’, whereas the items j with
xj = 0 are ’normal’. A pooled measurement yi is obtained
by taking the boolean sum (boolean OR) of xj in some sub-
set Ai ⊂ {1, .., N}, i.e. yi = ∨j∈Ai

xj . With a slight abuse
of notation, we will represent a collection of M pooled mea-

1In [3, 4, 5] K was fixed and N → ∞, while [6, 7] let both K,N → ∞.
2The authors of [8] have also independently started to work on an LP

relaxation solution (private communication).
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surements by an M × N binary matrix A, where Aij = 1 if
item j belongs to the subset pooled in test i. We will use the
vector notation

y = A ∨ x (1)

to represent the operation of obtaining the results of these M
tests. In the presence of noise we allow the results of some
tests to be corrupted (inverted): we allow both false alarms,
i.e. a positive outcome yi despite all the items xj tested in Ai

are negative, and mis-detections where yi = 0 while at least
one xj in Ai is non-zero. We represent this by

y = (A ∨ x)⊗ n (2)

where n is the boolean vector of errors, and ⊗ is the boolean
XOR operation. Group testing studies both the design of the
measurement matrix A and the decoding of x given y. Both
deterministic and random designs of A are of interest.

2.1. Group testing theory: exact recovery and bounds

We review some results in combinatorial group testing [10, 2]
for exact recovery and recovery with small error probability.

Definition 1 We call a measurement matrix A K-separating,
if boolean sums of sets of K columns are all distinct. A is
called K-disjunct, if the union of any K columns does not
contain any other column.

TheK-separating property onA implies that any xwith up-to
K non-zeros can be recovered exactly [2]. However, in gen-
eral, the recovery problem requires searching over all subsets.
The K-disjunct property simplifies the search, and a simple
algorithm exactly recovers x [2]: let J = {i | yi = 0}. Set
xj = 0 for those j for which there exists i ∈ J with Aij = 1.
The remaining entries in x are labeled as 1. We call this al-
gorithm the baseline algorithm. It can also be applied to non-
disjunct matrices A, albeit loosing the correctness guarantee.

2.2. Required number of tests

For guaranteed recovery in the noiseless setting, a lower
bound requiring K2/ log(e(K + 1)/2) log(N) tests has been
established, and a family of combinatorial designs of A was
found achieving (e log 2)K2 log(N) tests [10].

By allowing non-zero probability of error in recovery3

the number of tests can be reduced. Moreover, it turns out
that with brute-force decoding the smallest possible number
of tests is asymptotically achieved with certain random de-
signs, meeting information theoretic lower bounds. This has
been derived for noiseless designs in [5] and generalized to
noisy scenarios for arbitrary symmetric models in [11] using
the Fano inequality4. Now consider an arbitrary analysis pro-
cedure F . We define MF (K,N, γ) to be the smallest num-
ber of tests such that the analysis procedureF can recover the

3Assuming that K-subsets of defective items are uniformly distributed.
4For asymmetric models, more involved ideas of capacity bounds in Mul-

tiple Access Communication models are used for sharp lower bounds [5, 9].

correct active inputs with probability of error less than γ. A
notion of screening capacity is introduced in [3] for recovery
procedure F with error probability γ:

CF (K) = lim
N→∞

(logN/Mf (K,N, γ) (3)

It was shown in [3] that simple i.i.d. Bernoulli random matri-
ces achieve the optimal screening capacity under brute-force
analysis for γ > 0 and arbitrary independent noise. The prob-
ability p of having 1 in each entry Aij is set to maximize the
mutual information between x and y. For the noiseless case
this leads to p = 2−1/K , and the required number of tests
with brute-force decoding is M = K log(N)(1 + o(1)), see
[5]. We now overview existing recovery methods.

2.3. Recovery algorithms

Brute Force (BF) recovery finds x with the smallest number
of non-zero components to satisfy all the tests:

min ‖x‖0 such that y = A ∨ x (4)

The complexity is enumerating all the subsets of size up to K .

Separate testing of Inputs (STI) STI is a simple method
effective for random designs, and can be traced back to
Fisher’s ideas on randomization in estimation. STI separately
computes the empirical mutual information (EMI) between
Ai and y, regarding the influence of other inputs as noise.
Then it selects K elements of x with highest EMI. An analy-
sis and an empirical study of STI was conducted for several
models including boolean group testing and linear models in
[9], including a preliminary comparison to LP relaxation.

Loopy belief propagation decoder (LBP) The decoder
proposed in [7] invokes the max-product form of the loopy
belief propagation algorithm, a popular but enigmatic ap-
proximate inference approach for graphical models. LBP has
been used with success for many combinatorial optimization
problems, e.g. [12]. Given a probabilistic model for noisy
group testing represented as a factor graph, [7] derive the
corresponding LBP message update equations. LBP is an
iterative algorithm, and may or may not converge, and when
it converges it may not give the optimal answer. So far no
guarantees on BP performance for group testing are known.

Combinatorial basis pursuit (CBP) and matching pur-
suit (CMP) These algorithms proposed in [8] loosely mimic
the corresponding algorithms from compressed sensing. The
CBP algorithm invokes the baseline decoder that we de-
scribed earlier in Section 2.1: it sets xj = 0 if there exists i
such that both Aij = 1 and yi = 0. All the other xj are set
to 1. This is guaranteed to be correct if the matrix A is dis-
junct. CMP proceeds columnwise and sets xj to 1 if Aj ≤ y.
Note that in the noiseless setting these algorithms are almost
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equivalent except when A has all-zero columns. The analysis
in [8] establishes that an upper bound on the number of tests
required to recover x with error-probability at most N−δ is
2e(1+ δ)K log(N) for CBP and e(1+ δ)K log(N) for CMP.
They also analyze the performance of the modified CBP and
CMP algorithms in the noisy setting, and show that they noisy
CMP is also O(K log(N).

2.4. Parallels with compressed sensing

Many authors have commented on the parallels between
group testing and compressed sensing, where one has a
sparse signal x ∈ R

N , and tries to find it from M � N
measurements using a random measurement matrix A. The
combinatorial problem is

min ‖x‖0 such that y = Ax (5)

If we replace the measurement model with the boolean one,
we obtain the group testing problem in (4). The basis pursuit
algorithm for compressed sensing alluded to earlier solves the
�1 relaxation of this subset selection problem:

min ‖x‖1 such that y = Ax (6)

The minimum number of measurements to recover x ex-
actly have been established for various constructs of A, e.g.
O(K log(N/K)) tests are required for i.i.d. Gaussian mea-
surement vectors. Next, we generalize this LP relaxation to
group testing for both noiseless and noisy settings.

3. LP RELAXATION FOR GROUP TESTING

We now describe a linear programming relaxation solution
which parallels the basis pursuit algorithm for compressed
sensing. The challenge is of course that y = A ∨ x is not
linear. However we note that we can replace it with a closely
related linear formulation: AIx ≥ yI , and AJx = 0 where
I = {i | yi = 1} are the positive tests, and J = {i | yi = 0}
are the negative tests. This gives us an equivalent binary lin-
ear programming formulation:

min
∑

j

xj such that: x ∈ {0, 1} (7)

AIx ≥ yI , AJx = 0.

This problem is equivalent to the group testing problem, and it
is also NP-hard in general. By relaxing the boolean constraint
on x we obtain a tractable LP relaxation:

min
∑

j

xj such that: 0 ≤ x ≤ 1 (8)

AIx ≥ yI , AJx = 0.

In case of non-integral xj in the solution we set them to 1.

3.1. LP relaxation in the noisy setting

By adding slack variables ξ = {ξ1, .., ξM} we obtain an LP
relaxation for the noisy version of group testing:

min
∑

j

xj + α
∑

i

ξi (9)

such that: 0 ≤ x ≤ 1, 0 ≤ ξ, ξI ≤ 1

AIx+ ξI ≥ yI , AJx = 0+ ξJ .

Note that the sum AJx may exceed 1 if multiple entries in x

are active for a given row, hence we do not impose the ξ ≤ 1
constraint for J . The regularization parameter α balances
the amount of noise versus the sparsity of the solution. By
using parametric linear programming it is possible to trace the
whole solution path as a function of α, which allows one to
pick a solution with the desired number of non-zero elements.

3.2. Remarks on LP relaxation.

We now establish some guarantees for noiseless LP in (8). If
the solution x̂ to LP is integral – then it is also the optimal
solution x∗ to the combinatorial group testing problem. Fur-
thermore, we show that LP relaxation is a strict improvement
(in probability of exact recovery) over the baseline algorithm:

Lemma 1 If the matrix A is K-disjunct and x∗ is K-sparse
then LP relaxation provides the optimal solution, i.e. x̂ = x∗.

Proof. First, x∗ is a feasible solution to LP. Consider rows of
A corresponding to positive tests, and columns ofAwhich are
not eliminated via the zero-rows. There are exactly K such
columns, and the K-disjunct property implies that the matrix
is full-rank (in Euclidean sense). For each column Aj there
is at least one non-zero entry i which does not appear in any
other column. Since yi = 1, and Aij = 1, then xj ≥ 1. Now
x∗
j = 1 for all j ∈ I, so it is the unique optimal solution. 


By similar logic, if x∗ is the unique optimal solution to (4)
and the baseline algorithm recovers x∗, then so does the LP
relaxation. Hence, the sample-complexity of LP in the noise-
less case allowing small error probability is upper bounded by
that of CBP, and is also O(K log(N).

4. EXPERIMENTS

We now present simulation comparing the baseline algorithm
(we label it CBP), CMP, STI, LBP, and our LP relaxation.
First we describe some improvements we considered for LBP.

Modified LBP algorithm A typical implementation of
LBP computes the beliefs (approximate max-marginals)
p̃(xi), and sets xi = 1 when p̃(xi = 1) > p̃(xi = 0).
In addition to plain LBP, we also used a heuristic of selecting
only K items with the top K beliefs p̃(xi = 1). We call this
version of LBP oracle-LBP, as it has the knowledge of K . To
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Fig. 1. Probability of exact recovery in the noiseless case as a
function of number of tests M : LP, BP, Oracle-BP, STI, and
simple-decoder,N = 150, K = 4.

improve convergence we also used message damping (it does
not affect the fixed points of LBP).

In our first experiment we computed the probability of er-
ror over 100 trials as a function of M , for N = 150, K = 4,
with no noise. The plot appears in Figure 1. LP-relaxation
and oracle-LBP have the best performance, followed by STI.
Note that unlike oracle-LBP and STI, LP-relaxation does not
assume the knowledge of K .

For our second experiment we add noise, with i.i.d. 5%
probability of flipping each bit of y. We compare LP, LBP,
oracle-LBP, and STI. As expected the addition of noise in-
creases the number of tests needed for recovery, however, we
see that oracle-BP and LP still have the best performance.
Note that we simply set α = 1 in (9), and an adaptive choice
of α would improve the performance.

5. CONCLUSION

We presented a simple yet effective linear programming re-
laxation for the group testing problem. We compared its per-
formance on noiseless and noisy settings to other existing ap-
proximate solutions. For future work we are interested to
characterize tight bounds on the number of tests required for
exact recovery via LP relaxation. We are also interested to
study LP in adaptive group testing, perhaps by drawing paral-
lels to the sequential compressed sensing formulation [13].
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