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ABSTRACT

In this paper, we study the problem of distributed hypothesis testing
in cooperative networks of agents. All agents are trying to reach con-
sensus on the state of nature by their private signals and the binary
actions of their neighbors. This is a challenging problem because the
exchanged information of the agents is highly compressed. We pro-
pose a gossip-type method where every agent’s decision converges
in probability to the optimal decision held by a fictitious fusion cen-
ter. We prove the asymptotical property of the proposed method and
provide simulation results that demonstrate the communication cost
and convergence time of the method.

Index Terms— Binary consensus, gossip algorithm, distributed
detection, multiagent system.

1. INTRODUCTION

In this paper we study a distributed algorithm for binary consensus
for connected networks of Bayes agents. It is assumed that the infor-
mation exchanged among the agents is highly compressed. Initially,
the agents get independently their private observations from the en-
vironment and act based on the signals and their priors. Then in
every time slot, a pair of adjacent agents is selected to iteratively
update their beliefs and exchange their actions until they reach con-
sensus. It is shown that a system of a connected network of multiple
agents will reach a decision consensus that is the same as the optimal
decision rule of a fictitious fusion center obtained by the Bayes’ rule.

This problem has been of wide interest in various fields includ-
ing distributed detection, control theory, artificial intelligence and
biology. In [1], e.g., the authors regard the consensus to be the ma-
jority’s choice and solve the problem with noisy links. In [2], the
authors study a similar problem but the solution is not based on the
majority’s choice. In [3], an algorithm for belief consensus based on
average consensus is proposed, where it is assumed that the infor-
mation exchanged among agents is not compressed.

In this paper, we study the case when agents receive private sig-
nals about the binary state of nature and repeatedly exchange actions
with their neighbors as in a gossip algorithm. We aim at developing
a method that will allow the agents to reach a consensus that is the
same as the decision of a fictitious fusion center. The main contribu-
tion of the paper is in the proposed method and in proving that the
method leads to optimal consensus in probability.

The paper is organized as follows. In the next section we state
the problem. In Section 3, we provide a brief review of the gossip
algorithm. In the following section we present the proposed method.
The proof of convergence is outlined in Section 5, and simulation
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results are shown in Section 6. In Section 7, we provide some con-
cluding remarks.

2. PROBLEM STATEMENT

We consider a hypothesis testing problem in a network of Bayesian
agents An, n ∈ NA = {1, 2, ..., N}. The connections among
agents are described by an undirected graph G = (NA, E), where
NA is the set of vertices (agents), and E is a set of edges, where
each edge indicates a communication link between two agents. We
assume that the topology of the network is time invariant and that the
communication between any two communicating agents is perfect.

Each agent receives its independent private signal yn that may
be generated according to either H1 or H0. All the private signals
received by the agents are generated by the same hypothesis. The
agents are allowed to repeatedly make decisions on the state of na-
ture and modify their private beliefs. At time slot t ∈ N, for any
n ∈ NA, the An’s decision αn(t) is given by,

αn(t) =

{
1, if πn(t) ≥ 0.5

0, if πn(t) < 0.5
, (1)

where πn(t) is the An’s belief in H1 at t. When t = 1, we define
πn(1) = P (H1|yn). If a fictitious fusion center knows πn(1), ∀n,
it can be shown that its optimal decision is given by

πo =
1

1 +
(∏N

n=1
πn(1)

1−πn(1)

)−1 .

The fictitious fusion center makes decision αo = 1 if πo ≥ 0.5,
and αo = 0 otherwise. Thus, if every agent can obtain the average

value of the log-belief ratio (LBR), l̄ = 1
N
ΣN

n=1 log(
πn(1)

1−πn(1)
), the

agents will reach consensus in decision, which is the same as that
of the fictitious fusion center. This average consensus problem can
be solved by an average consensus [4] or a gossip algorithm [5].
However, if the communication between the agents is constrained so
that it is quantized, neither a quantized average consensus algorithm
[6] nor a quantized gossip algorithm [7] can guarantee the consensus
in decision. In the following section, we propose an algorithm which
has the following property:

lim
t→∞

P (αn(t) = αo) = 1, ∀ n ∈ NA. (2)

3. A BRIEF REVIEW OF THE GOSSIP ALGORITHM

The gossip algorithm is an asynchronous solution to an averaging
problem. Each node (in an N -agent network) has initially a scalar
measurement xi(1), and the goal is to have every agent compute the
average x̄ = (1/n)ΣN

n=1xi(1), which is the average consensus.
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As introduced in [5], this algorithm is carried out by linear itera-
tions. In every iteration, an agent is randomly chosen with probabil-

ity
1

n
(e.g., Ai). Then Ai randomly selects an agent from its neigh-

bors, say Aj , with probability Pij , and they exchange their current
estimates of x̄. Upon the exchange, the estimates are updated by

xi(t+ 1) = xj(t+ 1) =
xi(t) + xj(t)

2
.

It can be shown that with this algorithm, for any agent An ∈ NA,
the convergence is guaranteed [5], i.e., limt→∞ xn(t) = x̄.

The algorithm guarantees convergence, but is based on the as-
sumption that real numbers are exchanged among agents. If this
assumption is relaxed, one can apply a quantized gossip algorithm.
For the one proposed in [7], both the communication messages and
the estimates of the agents are quantized. In [8], a stochastic gossip
algorithm was analyzed whose update equations are given by

xi(t+ 1) = xi(t) + ε× (Q[xj(t)]−Q[xi(t)])

xj(t+ 1) = xj(t) + ε× (Q[xi(t)]−Q[xj(t)]),

where Q(·) is a uniform quantizer rounding each number to its near-
est integer and ε ≤ 1

2
. The main result of the analysis is that for

arbitrary initial value x(0) ∈ R
N , there exists a natural number t0

such that:
lim
t→∞

|xn(t)− x̄| < 1, ∀t > t0, ∀n ∈ NA. (3)

The rate of convergence of the algorithm can be found in [9].

4. THE PROPOSED METHOD

We propose a gossip style algorithm where the agents exchange
quantized messages and yet, the probability that their decisions
reach a consensus representing the optimal decision converges to
one. With the same settings as for the gossip algorithm, one pair of
agents is selected per time slot, and let they be Ai and Aj . Let also

U
(k)
n and L

(k)
n respectively be the upper and lower bounds of the

LBR ln(t) of An (n ∈ {i, j}), and γ
(k)
n be the threshold for decision

making, all defined at time slot t and iteration k and estimated by the

communicating neighbor. That is, Ai estimates U
(k)
j , L

(k)
j and γ

(k)
j

and vice versa. The agents Ai and Aj then implement the following
algorithm (referred to as Local Consensus Algorithm (LCA)):

Step 1 (Initialization): ∀n ∈ {i, j}, γ
(1)
n = 0, U

(0)
n = +∞, L

(0)
n =

−∞.

Step 2 (comparison): In iteration k, the agents act, and their action,

denoted by δ
(k)
n , is based on their individual LBRs and the thresh-

olds, i.e., ∀n ∈ {i, j},

δ(k)n =

{
1, if ln(t) ≥ γ

(k)
n

0, otherwise
.

Subsequently, each agent transmits its action δ
(k)
n to the communi-

cating agent and updates the threshold by γ
(k+1)
n = f(L

(k)
n , U

(k)
n ).

Here we assume that f(·) is identical and known to every agent.

Step 3 (Interval update): The agents update their estimates of Ln

and Un of the communicating agents, that is ∀n ∈ {i, j},

[L(k+1)
n , U (k+1)

n ] =

{
[γ

(k)
n , U

(k)
n ], if δ

(k)
n = 1

[L
(k)
n , γ

(k)
n ], if δ

(k)
n = 0

. (4)

Step 4 (update): If δ
(k)
i = δ

(k)
j , stop the communication and set

ln(t + 1) = ln(t) − γ
(k)
n . By (1), αn(t + 1) = δ

(k)
n , n ∈ {i, j}.

Otherwise, set the iteration number to k+1, and go back to Step 2.

Remark: The key feature of the algorithm is in letting the agents’
belief ratios converge to a fixed region rather than a scalar. It is very
important that the threshold update function f in Step 3 is identical
and known to every agent.

5. ANALYSIS

The main result on the action gossip algorithm is the theorem pre-
sented below. Before we state it, we define a set of initial values of
li for which the algorithm may fail to converge. We will show that
the choice of decision threshold γ must meet some requirements.
However, given such choice, it turns out that during the execution
of the proposed method, if li(t) + lj(t) = 0, the local algorithm
will not stop. Let l(1) be the vector of the initial LBRs of the N
agents, and F ⊆ R

N be the set of values of l(1) defined by F =

{l(1)|∃i, j ∈ NA,M ∈ N, s.t. li(1)+ lj(1)+
∑M

m=1 γ
(km) = 0},

where km can be any positive natural number, and γ(km) is any pos-
sible threshold after km iterations. Then if any l(1) ∈ F , there may
be no convergence to the optimal consensus.

Although there is an infinite number of failing values, since F is
a countable subset of RN , the probability P (l(1) ∈ F ) = 0 if l(1)
is an N -dimensional continuous random vector. In practice, due to
the constraint in storage and computation, the initial value of l(1) is
an element of a countable set. Therefore, we must set a limit for the
number of action exchanges between two selected agents. With this
modification, the agents will converge with high probability.

Theorem 1 For any given initial vector l(1) ∈ R
NA\F , if the LBR

l(t) is updated by using the LCA, then the optimal consensus can
be reached in probability, i.e., limt→∞ P (α(t) = αo · 1) = 1, as
long as the function f(·, ·) that updates the threshold γ

(k)
n satisfies

the following two properties:
(P1) γ

(k)
i = −γ

(k)
j , for any k = 1, 2, · · ·

(P2) If δ(k)i 	= δ
(k)
j for any k ∈ {1, 2, ...,m}, then

lim
m→∞

U (m)
n − L(m)

n = 0, ∀n ∈ {i, j}.

Property (P1) guarantees the average value of l(t) be a constant
at any time, and (P2) is the condition for convergence of the LCA.

For the sake of understanding, we provide the following example

of an update rule for γ
(k)
n , ∀n ∈ {i, j}:

Example 1 If U (k)
n = +∞ or L

(k)
n = −∞, γ(k+1)

n = γ
(k)
n +

(δ
(k)
n − 0.5)Δ; otherwise, γ(k+1)

n =
L

(k)
n + U

(k)
n

2
, where Δ can be

any positive real number.

Before proving the Theorem, we first prove the following two
lemmas. They clarify some properties of the proposed method.

Lemma 1 In the execution of LCA, the mean value of two LBRs does

not change and is given by
li(t) + lj(t)

2
=

li(t+ 1) + lj(t+ 1)

2
.

Besides, given any li(t) 	= −lj(t), if the update of γ meets the two
properties from Theorem 1, then there exists a finite time k̃ such that
αn(t+ 1) = δ

(k̃)
i = δ

(k̃)
j = δo, ∀n ∈ {i, j}, where

δo =

{
1, if

li(t)+lj(t)

2
> 0

0, otherwise
.

3298



Proof : First, note that (P1) requires γ
(k)
i = −γ

(k)
j , then Step 4

in LCA shows
li(t) + lj(t)

2
=

li(t+ 1) + lj(t+ 1)

2
. As a result,

once the local consensus is reached, the decision αn(t + 1) equals
the local optimal decision consensus.

When li(1)lj(1) > 0, the agents have already reached consen-
sus before any information exchange, and then the lemma is true. If
we assume that no iterartion k̃ exists when agents reach consensus,
then the proposed method will keep running. By (P2) in Theorem

1, U
(k)
n and L

(k)
n will asymptotically reach each other. Noting that

according to (4), both li(t) and lj(t) must be in the estimated inter-

val, it can be inferred that limk→∞ L
(k)
n = limk→∞ U

(k)
n = ln(t).

However, since li(t) 	= −lj(t), the estimated interval will be in con-
tradiction to the symmetry requirement of (P1). Therefore, there

exists such k̃. �

Lemma 2 Assuming l(1) ∈ R
N\F , let the state of the multi-

agent system be α(t) = [α1(t), α2(t), ..., αN (t)]�, and 1 =
[1, 1, ..., 1]� ∈ R

N . The proposed method has the following prop-
erties:

(G1) For any given initial state α(1) of the multi-agent system,
at any time during the execution of the proposed method, the state
α(t) lies in a finite set Φ.

(G2) For any state α(t) = α 	= αo · 1 , there exists a finite time
tα such that P (α(t+ tα) = αo · 1|α(t) = α) > 0.

(G3) The state αo · 1 is an absorbing state, namely, P (α(t′) 	=
αo · 1|α(t) = αo · 1) = 0, for any t′ > t.

Proof : Since the number of agents N is finite, the state is given
by α(t) = [α1(t), α2(t), ..., αN (t)]�, and during the execution of
the proposed method, the state α(t) is in a finite set Φ of size 2N .
Hence, the property (G1) is satisfied. Once the state α(t) becomes
αo · 1, every agent makes identical decision as αo, and regardless
which edge eij is selected, Ai and Aj will not change their deci-
sions. The reason for the latter is that the local consensus between
them has already been achieved, showing that (G3) is satisfied.

The claim that the proposed method satisfies (G2) can be proved
by mathematical induction.

Basis: we first show that the statement holds for N = 2. When
N = 2, only A1 and A2 can be selected at time slot 1. By Lemma
1, their actions will converge to αo at time 2, which shows that the
probability for converging in finite time is positive.

Inductive step: We show that if (G2) is met when N = m, then
it also holds when N = m+ 1.

Since every edge has a positive probability to be selected in ev-
ery time slot, if we can prove that for any state α, there exists an
edge sequence such that after these selections the global consensus
is reached, we prove (G2).

Without loss of generality, we assume that αo = 1. Since the
graph G with N = m + 1 nodes is connected, there exists a con-
nected subgraph Gw = G\Aw with m nodes, where Aw is the only
left node. For any α(t) = α, by the assumption in the inductive
step, the probability that the m nodes reach consensus in finite time
is positive. Then there exists a sequence of edges such that consen-
sus among these m agents is reached after time tα. There are three
possible outcomes.

Case 1: αw(t) = 1, and the optimal consensus of the remaining
agents is also 1. In such cases the consensus is obtained after time
tα, showing that (G2) is satisfied.

Case 2: αw(t) = 1, while the optimal consensus of the re-
maining agents is 0. Let Av be a neighbor node of Aw, with
evw being the edge in between. Consider the choice of edges

{evw, e(r1,s1):(rt1 ,st1 ), evw, e(r2,s2):(rt2 ,st2
), evw...} in the pro-

posed algorithm, where e(r1,s1):(rt1 ,st1 ) represents a sequence of
edges, where none of the edge vertices is equal to v and where the
sequence produces a consensus in Gw. The consensus among Gw is
assured by the assumption that (G2) holds when N = m. We will
show that by this selection, the system converges to αo · 1.

Let the time slots when edge evw is selected be {t1, t2...}. If
we assume the optimal consensus αo · 1 cannot be reached in finite
time, the decision of Av must be zero at these time slots for the
summation of all LBRs is positive. We let the evolution of threshold
for agent An ∈ G at the kth iteration be described by a function

of its action sequence, γ
(k)
n (δ

(1)
n , δ

(2)
n , ..., δ

(k−1)
n ), ∀n ∈ NA. By

LCA, if lw(ti) > |γ(2)
v (0)|, it holds that lw(ti) − lw(ti+1) >

max{|γ(2)
v (0)|, |lv(ti)|}. Then we have lw(ti) − lw(ti+1) >

|γ(2)
v (0)| if lw(ti) > |γ(2)

v (0)|. This implies that there exists a finite

number i1 such that lw(ti1) < |γ(2)
v (0)|. Then at time ti1+1, the

action sequence of Av will be δ
(1)
v = 0, δ

(2)
v = 1. By the same rea-

son, there exists a finite number i2, such that lw(ti2) < |γ(3)
v (0, 1)|.

It follows that there always exists a time im, such that

lw(tim) < |γ(m+1)
v (0, 11:m−1)|, ∀m ∈ 2, 3, · · ·, (5)

where 11:m−1 represents a consecutive sequence of m− 1 ones.
If we assume that the optimal consensus cannot be reached

by this edge selection in finite time, the agents in Gw will al-
ways reach consensus as 0. From property (P2), we deduce

that limm→∞ |γ(m+1)
v (0, 11:m−1)| = 0. By using (5), we have

limt→∞ lw(t) = 0, which is contradicted by the assumption that
the average value of l(1) is positive, i.e., αo = 1. Hence, after finite
time tα, the remaining m agents will reach consensus as 1, which
shows that (G2) holds.

Case 3: Now α
(t)
w = 0, while the optimal consensus of the re-

maining agents is 1. There exists another subgraph Gw′ of G with m
nodes. Let the only remaining node of this subgraph be Aw′ with its
neighbor Av′ . Then there exists a sequence of edges that produces
consensus on the subgraph Gw′ which yields either a global consen-
sus or a state, which is the same as in Case 2. By the above proof, the
system can reach consensus in finite time with positive probability.
�

Proof of Theorem 1: By (G1), the state α(t) always lies in a
finite set Φ, and (G2) implies that there exists a finite number T =
maxα∈Φ tα such that P (α(t+ T ) = αo · 1|α(t) = α) > 0 for any
α ∈ Φ. Let ε = minα∈Φ{P (α(t+ T ) = αo · 1|α(t) = α)}. Then,
it follows that P (α(t + T ) 	= αo · 1|α(t) 	= αo · 1) ≤ 1 − ε. By
the definition of conditional probability, P (α(t) 	= αo · 1|α(1) 	=
αo · 1) ≤ (1 − ε)�

t
T

�, which converges to zero as t → ∞. Note
that if α(1) = αo · 1, (G3) implies that P (α(t) = αo · 1|α(1) =
αo · 1) = 1. Therefore, limt→∞ P (α(t) = αo · 1) = 1. �

If l(1) is noncountable, based on the theorem, the proof of (2) is
immediate.

6. SIMULATIONS

In this section, we present some simulations of the proposed al-
gorithm and numerical comparisons between the quantized gossip
[7] and the proposed method. In all the experiments, the multi-
agent system is modeled as a random geometric graph [10] G(V,E),
where the N agents are chosen uniformly and independently in a
1 × 1 square. Each pair is connected if the Euclidian distance be-

tween the nodes is smaller than r(N), where r(N) =
√

log(N)
N

due

to the connectivity requirement.
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We have agents that observe data and they have to choose be-
tween the following two hypotheses:

H1 : yi = θ + wi

H0 : yi = wi,

where θ is known and wi is a random perturbation modeled as a
zero mean Gaussian random variable with known variance σ2

w, and
we assume that θ > 0. For the prior probability of the hypothesis,
we let P (H0) = P (H1) = 1/2. Without loss of generality, we
assume the data are generated from H1, and we set θ = 1, σw = 5.

In the first experiment, we study the LBR of N = 15 agents
evolving by quantized gossip and the proposed method. In the quan-
tized gossip algorithm, since it is with high probability that |li(1)| <
0.6, we use a q bits mid-riser uniform quantizer from −0.6 to 0.6,
which is given by:

Q(x) =

⎧⎪⎨
⎪⎩
0.6, ifx > 0.6

−0.6, ifx < −0.6
1.2

(2q−1)
·
(
� x
1.2/(2q−1)

�+ 1
2

)
, otherwise

,

where q = 4 in experiment one.
In the proposed method, we let γ update by the rule introduced

in Example 1, where we set Δ = 0.2. In order to make a compar-
ison between the two methods, they are implemented on the same
network with identical initial observations and selection of edges in
each iteration. The results are shown in Fig. 1, where we see the
evolution of the LBRs of five of the 15 agents. It can be seen that the
proposed method provides a consensus after t = 100, while for the
agents using the four bits quantized gossip method, the LBRs keep
oscillating.
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Fig. 1. Evolution of LBR by the proposed and quantized gossip
methods.

In the second part, we conducted Monte Carlo simulations,
where we ran the above experiment with the same parameters for
1,000 times. In each experiment, given identical initial data, the
multi-agent system implemented the proposed method with thresh-
old updated as in Example 1. For comparisons, it also implemented
the 1-bit, 3-bit, 5-bit, 8-bit quantized gossip. In Fig. 2, the con-
vergence rate and convergence probability is compared among the
methods. It can be seen that the proposed method converges in all
trials (as predicted by Theorem 1), whereas none of the quantized
gossip algorithms converges in all trials. We also observed that our
method converged faster than the 5-bit quantized gossip, and the
1-bit quantized gossip did not reach consensus at all.

If we define the communication cost to be the number of trans-
missions × the number of bits per transmission, then the average

communication cost for the quantized gossip is q (i.e., 1, 3, 5, or 8)
bits in this case. However, the communication cost of our method
was merely 1.1468 bits.
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Fig. 2. The convergence rate and consensus probability with differ-
ent methods.

7. CONCLUSION

In this paper we proposed a method for binary consensus with bi-
nary communication. We proved that the consensus is achieved with
probability one. We demonstrated the performance of the proposed
methods and compared it with the quantized gossip method by sim-
ulations. The results show that the proposed method has favorable
performance. The method is general and can be utilized in many
distributed applications.

8. REFERENCES

[1] Y. Mostofi and M. Malmirchegini, “Binary consensus over
fading channels,” IEEE Transactions on Signal Processing,
vol. 58, no. 12, pp. 6340–6354, 2010.

[2] P. Braca, S. Marano, V. Matta, and P. Willett, “Asymptotic
optimality of running consensus in testing binary hypotheses,”
IEEE Transactions on Signal Processing, vol. 58, no. 2, pp.
814–825, 2010.

[3] R. Olfati-Saber, E. Franco, E. Frazzoli, and J. Shamma, “Be-
lief consensus and distributed hypothesis testing in sensor net-
works,” Networked Embedded Sensing and Control, pp. 169–
182, 2006.

[4] J. N. Tsitsiklis, “Problems in decentralized decision making
and computation,” Tech. Rep., DTIC Document, 1984.

[5] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized
gossip algorithms,” IEEE Transactions on Information Theory,
vol. 52, no. 6, pp. 2508–2530, 2006.

[6] P. Frasca, R. Carli, F. Fagnani, and S. Zampieri, “Average con-
sensus on networks with quantized communication,” Interna-
tional Journal of Robust and Nonlinear Control, vol. 19, no.
16, pp. 1787–1816, 2009.

[7] A. Kashyap, T. Basar, and R. Srikant, “Quantized consensus,”
Automatica, vol. 43, no. 7, pp. 1192–1203, 2007.

[8] J. Lavaei and R. M. Murray, “On quantized consensus by
means of gossip algorithm - Part I: Convergence proof,” in
American Control Conference. IEEE, 2009, pp. 394–401.

[9] J. Lavaei and R. M. Murray, “On quantized consensus by
means of gossip algorithm - Part II: Convergence time,” in
American Control Conference. IEEE, 2009, pp. 2958–2965.

[10] M. Penrose, Random Geometric Graphs, vol. 5, Oxford Uni-
versity Press, USA, 2003.

3300


