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ABSTRACT

The most common approach to attitude estimation involves

direct estimation of the rotation matrix or its associated

quaternion. This results in a difficult constrained estima-

tion problem. Here instead we develop a new online algo-

rithm that directly estimates the angular velocity which is

unconstrained. The rotation matrix or quaternion is then eas-

ily obtained from the kinematics. We sketch an averaging

analysis of stability of the new algorithm.

Index Terms— attitude estimation, rotation matrix,

SO(3), averaging

1. INTRODUCTION

Attitude estimation is concerned with determining the orien-

tation and angular velocity of a moving rigid body from body

centered measurements as well as known reference measure-

ments such as star-sight measurements.

The attitude or pose of a moving rigid body is the orien-

tation of each axis of a body fixed frame fixed with respect to

the axes of a temporally fixed reference frame. The attitude

can be represented by a rotation matrix which is an orthog-

onal 3 × 3 matrix with unit determinant. The set of rotation

matrices has group structure and is denoted as the special or-

thogonal group, SO(3). Associated with the rotation matrix

is a derived quantity, the angular velocity. Typical attitude

measurements are available in body fixed coordinates of con-

stant quantities in inertial coordinates. Also rate gyro mea-

surements are often available. All these measurements are

noisy and the rate gyro measurements are biassed [1].

The usual approach to attitude estimation involves direct

estimation of the rotation matrix or its quaternion equivalent

[1],[2],[3]. This is not straightforward since the algorithms

must ensure the rotation matrix or quaternion lie in the appro-

priate spaces i.e. S0(3) and a hypersphere respectively.

In this paper we take a different approach. We construct

an adaptive i.e. online algorithm that directly estimates the

angular velocity. The angular velocity is unconstrained and

that makes the estimation easier. The rotation matrix or

quaternion is then easily constructed from the kinematics.

The remainder of the paper is organised as follows. In

section 2 we set up the problem and construct the adaptive al-

gorithm. In section 3 we provide an introduction to averaging

stability analysis. In section 4 we sketch an averaging analy-

sis of stabilty of the new algorithm. Conclusions are offered

in section 5.

Notation and Acronyms.

θ =‖ ω ‖, θo =‖ ωo ‖, θ∗ =‖ ω∗ ‖; ω̄ = ω
‖ω‖ ; S(ω) or

Sω denotes a skew symmetric matrix;wp1 = with probability

one; superscript H denotes complex conjugate transpose; su-

perscript v∗ denotes complex conjugate; subscript v∗ denotes

a fixed or
′
frozen

′
value; we may then have v∗

∗ .

2. ADAPTIVE ALGORITHM CONSTRUCTION

We assume two sets of noisy measurements

y(t) = μ(t) + ny(t), z(t) = m(t) + nz(t)

in body fixed coordinates of known constant quantities in in-

ertial coordinates so that μe = R(t)μ(t) ⇒ μ(t) = RT (t)μe

where R(t) is the rotation matrix and μe is a fixed known ref-

erence; similarly m(t) = RT (t)me. Also ny(t), nz(t) are

independent measurement noises. It is typical to also assume

noisy rate gyro measurements yω(t) = ω(t) + b(t) + nω(t)
where b(t) is the bias or drift. However this generates ad-

ditional difficulties and will be considered elsewhere. The

problem then is to estimate the rotation matrix from the noisy

measurement signals y(t), z(t).
Since RT (t)R(t) = I3 and detR(t) = 1, the rotation

matrix obeys the kinematics

dR(t)
dt

= RS(ω) (2.1)

where S(ω) is a skew symmetric matrix

S(ω) = Sω =

⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠
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and ω = (ω1, ω2, ω3)T is the angular velocity vector.

Note that in view of (2.1) we have, dμ
dt = ṘT μe =

ST
ω RT μe = −Sωμ so that we obtain the kinematics for μ,

μ̇ + S(ω)μ = 0 (2.2)

And similarly for m(t). It is instructive to analyse the stability

of this equation for fixed ω. The characteristic equation is

|pI + Sω| = 0 = p(p2 + θ2) where θ =‖ ω ‖. This has roots

p = 0,±jθ and of course corresponds to sinusoidal motion.

It is in any case clear that the motion does not explode since

dμT μ

dt
= μ̇T μ + μT μ̇ = −μT (ST

ω + Sω)μ = 0

Further so long as μ(0) = μe obeys μT
e μe = 1 we have

μT μ = 1 for all t; and similarly for m(t).
Rather than estimate R(t) or its quaternion equivalent di-

rectly we estimate ω(t) and then generate R(t) from the kine-

matics (2.1).

Before developing an algorithm we recall some well

known facts. Since μ(t) has only two free components while

ω(t) has three we cannot estimate ω(t) from one measure-

ment signal such as y(t) alone. It turns out that one must

use one measurement signal say yt to estimate the orientation

ω̄(t) = ω(t)
θ(t) and the other measurement z(t) to estimate the

magnitude θ(t) =‖ ω(t) ‖.

2.1. Getting ω̄(t)

Our approach to estimating ω̄(t) is a modification of standard

instantaneous steepest descent [4]. We introduce the least

squares criterion J(ω̄) = 1
2 ‖ y − μ ‖2= 1

2yT y − μT y +
1
2μT mu = 1

2yT y − μT y + 1
2 and then the adpative steepest

descent algorithm is

dω̄

dt
= −γ

dJ(ω̄)
dω̄

= γKT y (2.3)

where we have introduced the so-called sensitivity matrix

K = dμ
dω̄T . The evolution equation for this can be found by

differentiating through the μ-kinematics to find

K̇ + θS(ω̄)K = θS(μ)

where we have used the fact that S(ω)μ = −S(μ)ω. Unfor-

tunately, in view of our stability analysis of (2.2) it follows

that this equation must explode.

To overcome this we modify the equation by introducing

some damping as follows

K̇ + ζθK + θS(ω̄)K = θS(μ) (2.4)

where ζ is a damping ratio. Checking the stability for fixed ω̄
we find

|pI + ζθI + θS(ω̄)| = 0 = (p + ζθ)[(p + ζθ)2 + θ2]

which has roots −ζθ,−ζθ ± jθ which are stable. When ω̄
is time varying, then as long as it varies sufficiently slowly

([5],[6]) the equation will still be stable.

The adaptive algorithm for ω̄(t) now consists of the

triplet, (2.2),(2.3),(2.4).

To avoid confusion between the estimated and true quan-

tities we denote the true angular velocity as ωo = ωo(t) and

the true noise free measurement as μo = μo(t) which has

kinematics μ̇o + S(ωo)μo = 0. The measurements are then

y(t) = μo(t)+ny(t) and z(t) = mo(t)+nz(t). We similarly

have θo = θo(t), ω̄o = ω̄o(t).

2.2. Getting θ(t)

To estimate θ(t) it seems necessary to isolate its periodic as-

pect; we proceed heuristically. Holding ω̄, θ fixed differenti-

ate the first order dynamics ṁ + θS(ω̄)m = 0 to obtain

0 = m̈ + θS(ω̄)ṁ
⇒ 0 = m̈ + θS(ω̄)(−θS(ω̄))m
⇒ 0 = m̈ + θ2(I − ω̄ω̄T )m

via the well known property S2(ω̄) = ω̄ω̄T − I . Now it turns

out that the compact way to proceed is to make use of the

eigenvectors v of S(ω̄). Again holding v fixed (since ω̄ was

fixed) and multiplying through by vT yields, since vT ω̄ = 0

vT m̈ + θ2vT m = 0

so that vT m(t) is a combination of sines and cosines. Indeed

from Rodriguez formula for ω̄, v fixed,

vT m(t) = vT mecos(θt) − vT S(ω̄)mesin(θt)
= vT mecos(θt) + jvT mesin(θt)
= vT mee

jθt

With these heuristics in mind we propose to estimate θ as

follows. We draw on a body of work in the adaptive litera-

ture concerned with estimation of frequency. In particular we

modify the algorithm developed by [7] to the current setting.

There are three steps. Firstly given ω̄(t) from (2.3) we

compute v(t) = v(ω̄(t)).Secondly we generate an auxiliary

signal from the following stable filtering operation,

ẍ + 2ζθẋ + θ2x = 2ζθ2Re(vT z) (2.5)

Then the adaptive algorithm is

θ̇ = −γ2ζθx[θRe(vT z) − ẋ] (2.6)

So the complete algorithm consists of (2.3),(2.6) together

with the auxiliary equations (2.2),(2.4),(2.5) and the equation

v(t) = v(ω̄(t)). We now turn to the stability analysis.
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3. AVERAGING ANALYSIS OF STABILITY:
PRELIMINARIES

The algorithm is highly nonlinear and a direct stability analy-

sis would be a difficult task. Instead we carry out an averaging

analysis of the algorithm stability [4],[8],[9].

Avaraging analysis is an advanced form of perturbation

analysis applying to systems of differential or difference

equations with small parameters (in this case γ). The idea is

to replace the primary system of interest with a simpler sys-

tem whose stability analysis is more manageable. One then

relates the behaviour of the two systems together by means

of a Hovering theorem [4]. Averaging has a long history in

applied mathematics particularly nonlinear mechanics; see

historical notes in [8],[4].

[4] delivers results only in discrete time. However the

techniques developed there extend easily to continuous time

as illustrated in [10],[11]. We use that approach here.

Since averaging analysis does not seem to have been ap-

plied before in attitude estimation we provide a brief heuristic

derivation of the averaging equations before proceeding to a

more formal analysis.

The adaptive algorithm (2.3),(2.6) together with the aux-

iliary equations (2.5)(2.2),(2.4), form a mixed (aka two) time-

scale system. This is because we assume the gain γ is small

so that ω changes slowly (the slow time-scale) whereas K, μ
change rapidly (the fast time-scale ).

To keep the heuristic discussion brief we consider only

the algorithm for ω̄(t) and assume θ is constant. But we treat

the full algorithm in the next section. To begin the heuristic

discussion then, integrate (2.3) from an arbitary time t over

an interval T to get,

ω̄(t + T ) − ω̄(t) = γ

∫ t+T

t

KT (u)y(u)du

If ω̄(t) changes slowly (since γ is small) and T is not too large

then μ(t) will not differ too much from the value it would

have if we integrated (2.3) from time t with ω̄ fixed at the

value at the start of the interval, namely ω̄(t). We denote this

value as μ(ω̄(t), u) and it obeys

dμ

du
+ θS(ω̄(t))μ(ω̄(t), u) = 0, t ≤ u ≤ t + T

This called the frozen state equation. Similarly we introduce

a frozen state equation generating K(ω̄(t), u). We thus get

ω̄(t + T ) − ω̄(t) ≈ γ

∫ t+T

t

KT (ω̄(t), u)y(u)du

Next we assume that for fixed ω̄ the following limit exists

uniformly 1 in t,

lim
T→∞

1
T

∫ t+T

t

KT (ω̄, u)μ(ω̄, u)du ⇒< KT , μ > (ω̄)

1The alert reader may be worried about the uniformity in a stochastic

context. It cannot hold but can be gotten around without affecting the result

And similarly we assume existence of < KT , y > (ω̄). Then

if T is not too large we have

ω̄(t + T ) − ω̄(t) ≈ γT < KT , y > (ω̄(t))

and dividing by T and letting T → 0 leads to the averaged

system
˙̄ωav = γ < KT , y > (ω̄av(t)) (3.1)

This is a simpler system than the primary system (2.3) since it

is an autonomous system. Finally we need to link the primary

and averaged systems by a Hovering theorem [4] e.g.

sup0≤t≤T
γ
|ω̄(t) − ω̄av(t)| ≤ CT (γ) wp1 (3.2)

This result is valid for fixed γ but it has the crucial property

that CT (γ) → 0 wp1 as γ → 0. This Hovering theorem is a

so-called finite time averaging result. It can be extended to an

infinite interval result [8],[4]. For lack of space we treat only

finite time averaging.

Actually there are two stages to the finite time averaging.

Firstly we do a stability analysis assuming the true angular ve-

locity is fixed. Then we treat the case of time-varying angular

velocity i.e. tracking. For lack of space we deal only with the

case of constant true angular velocity. The time-varying case

will be developed elsewhere but follows the lines of [4] e.g.

as in [10].

4. AVERAGING ANALYSIS

Unfortunately lack of space prevents inclusion of all the de-

tails which will be given elsewhere. Here we sketch the re-

sults.

4.1. Averaging ω̄(t)

It can be shown that the averaged system for ω̄(t) is,

˙̄ωav = γB(ω̄av)(ω̄av − ω̄o) (4.1)

where

B(ω̄∗) = R∗(ζS(ω̄∗) − (I − ω̄∗ω̄T
∗ )), R∗ =

ω̄T
o μeω̄

T
∗ μe

(1 + ζ2)θ∗

We now carry out a linearized stability analysis of this system.

The linearized system is

˙̄ωav = γB(ω̄o)(ω̄av − ω̄o)

γB(ω̄o) has eigenvalues p = 0 and p = −γRo ± jγζRo

where Ro = (ω̄T
o μe)2

(1+ζ2)θo
> 0. Thus we have two stable roots

and one marginally stable.

Continuing, we then have the solution,

ω̄av(t) − ω̄o = eγB(ωo)t(wav,o − ω̄o)
= [2Re(v∗vH

∗ )e−γRotcos(γζRot) + ω̄oω̄
T
o ](wav,o − ω̄o)
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where wav,o = ω̄(0) is the initial value of ω̄av(t). Thus

ω̄av(t) converges to wav,e satisfying

wav,e = ω̄o + ω̄o[ω̄T
o wav,o − 1] = ω̄oω̄

T
o wav,o

Thus we have local convergence 2 and can determine ω̄o from

wav,e/ ‖ wav,e ‖.

4.2. Averaging θ(t)

It can be shown that the the averaged system is

θ̇av = −2γζθ2
av[2ζaRfT (ω̄av − ω̄o) + Γ(ω̄av)(θav − θo)]

(4.2)

Expressions for aR, f,Γ(ω̄av) are omitted since we don’t

need them for the ensuing joint analysis.

4.3. Joint Averaging

Putting the two averaged systems (4.1),(4.2) together we get,

( ˙̄ωav

θ̇av

)
= γ

( B(ω̄av)
−4ζ2θ2

avaRfT

0
− 2ζθ2

avΓ(ω̄av)
)( ω̄av − ω̄o

θav − θo

)

The linearised averaged system is then

( ˙̄ωav

θ̇av

)
= γ

( B(ω̄o)
−4ζ2θ2

oaRfT

0
− 2ζθ2

oΓ(ωo)
)( ω̄av − ω̄o

θav − θo

)

where, Γ(ωo) = |vT
o me|2
2θo

. Because of its triangular struc-

ture this system has the same eigenvalues as γB(ωo) together

with an eigenvalue −2γζθ2
oΓ(ωo) = −γζθo|vT

o me|2 which

is stable. The eigenvectors of the linearised system matrix are

then
(

ω̄o

0

)
,
(

vo

0

)
,
(

v∗
o
0

)
,
(

0
1

)
. And we conclude as before that

ω̄av(t) → wav,e = ω̄oω̄
T
o wav,o. We also conclude θav(t) −

θo = e−2ζθ2
oΓ(ωo)t(θav(0) − θo) → 0 as t → ∞. And so we

have local convergence.

5. SUMMARY

In this paper we have taken a different approach to attitude

estimation from body fixed measurements. Rather than esti-

mate the rotation matrix or quaternion as is usally done, we

have estimated the unconstrained angular velocity directly.

The rotation matrix can then be easily obtained from the kine-

matics. The construction of the new algorithm required two

stages. An estimator of the direction of the angular velocity

from one set of measurements and an estimator for the mag-

nitude of the angular velocity which used also a second set

of measurements. The direction estimator is a simple instan-

taneous steepest descent algorithm while the magnitude es-

timator uses the eigenvector of the associated skew symmet-

ric matrix and is inspired by existing methods of frequency

2In view of the zero eigenvalue we need in fact to carry out a center man-

ifold stability analysis [12] which in view of space limits will be treated else-

where

estimation. The resulting algorithm is nonlinear and stabil-

ity analysis was sketched using finite time averaging analysis.

The algorithm was found to be locally stable. Noise aspects,

infinite time averaging, tracking behaviour and the use of gyro

measurements will be pursued in the future.
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