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ABSTRACT

In this paper, a novel scheme for online, sparsity-aware learning is
presented. A new theory is developed that allows for the incorpo-
ration, in a unifying way, of different thresholding rules to promote
sparsity, that may even be of a nonconvex nature. The complexity
of the algorithm exhibits a linear dependence on the number of free
parameters.

Index Terms— Adaptive filtering, sparsity, thresholding opera-
tors, signal recovery.

1. INTRODUCTION

Sparsity-aware learning has been a topic at the forefront of research
over the last ten years or so [1]. Considerable research effort has
been invested in developing efficient schemes for the recovery of
sparse signal/parameter vectors. However, most of these efforts have
been and continue to be focussed on batch processing where all mea-
surements, training data, are available prior to the estimation task. It
is only very recently that online, time-adaptive algorithms have been
developed [2–4]. Moreover, the major evolution of these is along
a greedy-like philosophy and the �1-norm regularization of a Least
Squares (LS) regression term (LASSO-types). Equivalently, most of
the algorithms build around the hard and soft thresholding operators,
shown in Fig. 1a, in order to impose sparsity.

It is by now well established, in particular in the statistics com-
munity, that selecting the thresholding operator is a critical step, that
can significantly affect the variance and the sensitivity of the result-
ing estimate [5–7]. To this end, a number of alternative to hard and
soft thresholding rules have been proposed, in an effort to bypass
their drawbacks. In general, this is achieved by modifying the regu-
larization term, which can also be a nonconvex function.

In [8], an efficient sparsity-aware online algorithm was devel-
oped, in the context of the very recent advances of set theoretic es-
timation philosophy [9]. Sparsity was induced by constraining the
solution to lie within the weighted �1 ball, which turned out to be
equivalent to a soft thresholding rule.

The main goal of this paper is to develop a new online, sparsity-
aware scheme that can employ different thresholding rules, in a uni-
fying way. To this end, and since some of the thresholding rules are
associated with nonconvex functions, the currently available theory
of [9], must first be generalized. The current theory is built around
projections onto convex sets. For the needs of the current paper,
the theory has to include more general mapping operators, that al-
low for treatment of constraints associated with nonconvex sets. In
particular, we will constraint our solution to lie in a union of sub-
spaces, which is a nonconvex region. In the sequel, the possibilities

This work was supported in part by the Ramón y Cajal program.

of the new scheme will be exploited to derive efficient computational
schemes, by exploiting different thresholding rules.

2. SYSTEM MODEL AND PROBLEM STATEMENT

We will denote the set of all integers, nonnegative integers, positive
integers, and real numbers by Z, N, N∗, and R, respectively. Given
two integers j1, j2 ∈ Z, such that j1 ≤ j2, let j1, j2 := {j1, j1 +
1, . . . , j2}.

The stage of discussion will be the Euclidean space R
L, where

L ∈ N∗. Given any couple of vectors a1,a2 ∈ R
L, the inner prod-

uct in R
L is defined as the classical vector-dot product 〈a1,a1〉 :=

at
1a2, where the superscript t stands for vector/matrix transposition.

The induced norm will be denoted by ‖·‖.
Our task is to estimate the signal a∗ ∈ R

L, based on measure-
ments that are sequentially generated by the linear regression model:

yn = ut
na∗ + vn, ∀n ∈ N, (1)

where the model outputs (observations) (yn)n∈N ⊂ R, and the
model input vectors (un)n∈N ⊂ R

L comprise the measurement
pairs (un, yn)n∈N, and (vn)n∈N is the noise process. The un-
known signal a∗ is “sensed” by a sequence of inner products, with
appropriately selected “sensing” vectors un.

In this study, the signal a∗ is assumed to be sparse, i.e., most of
its components are zero. If we define ‖a∗‖0 to stand for the number
of nonzero components of a∗, then the assumption that a∗ is sparse
can be equivalently given by K := ‖a∗‖0 	 L. Hereafter, such
signals will be referred to as K-sparse.

3. THE SET THEORETIC ESTIMATION APPROACH TO
ONLINE LEARNING

The mainstream of sparsity-aware online methods follows the classi-
cal path of adaptive filtering [10], where a quadratic objective func-
tion is used to quantify the designer’s perception of loss. Such a
convex differentiable function is then regularized, by a sparsity pro-
moting term; the latter usually revolves around the �1 norm, and a
minimizer of the resulting optimization task is sought either by the
RLS or the LMS rationales, e.g., [2,3]. Very recently, a novel online
method for the recovery of sparse signals, referred to as the Adap-
tive Projection-based Algorithm, using Weighted �1-balls (APWL1)
to promote sparsity, was developed in [8].

The philosophy behind [8] departs from the classical approach,
and searches for a set of solutions which are in agreement with the
available measurements as well as the a-priori knowledge. More
specifically, at each time instance, n ∈ N, the training data pair
(un, yn) is used to define a closed convex subset of RL, which is
considered to be the region where the unknown a∗ lies with high
probability [9].
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A plethora of alternatives exist on how to “construct” such con-
vex regions. A popular choice takes the form of a hyperslab around
(un, yn), which is defined as:

Sn[ε] :=
{
a ∈ R

L : |ut
na− yn| ≤ ε

}
, ∀n ∈ N, (2)

for some user-defined tolerance ε ≥ 0, and for un �= 0. The param-
eter ε determines, the width of the hyperslabs, and essentially models
the noise effect, as well as various other uncertainties, like measure-
ment inaccuracies, calibration errors, etc. Any point that lies in the
hyperslab is considered to be in agreement with the corresponding
measurement pair, at the specific time instance. For example, if the
noise were bounded, then for any (un, yn) and a careful choice of ε,
it would be certain that the unknown solution would lie within Sn[ε].

Our ultimate goal, given the sequence of training pairs (un, yn)n∈N,
is to search for a point â∗ ∈ R

L that lies in the intersection of the
hyperslabs (Sn[ε])n∈N, which are defined by the training points.
This is achieved via a sequence of projections onto these hypeslabs.

A notable characteristic of the adaptive set theoretic rationale is
the simplicity with which convex constraints, (which encode a-priori
knowledge other than the training sequence), can be accommodated.
The generic algorithmic step comprises a single recursion; starting
from an arbitrary a0 ∈ R

L,

an+1 := Tn

(
an + μn

(
n∑

i=n−q+1

ω
(n)
i PSi[ε](an)− an

))
,

(3)
where the extrapolation parameter μn ∈ (0, 2Mn), with

Mn :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑n
n−q+1 ω

(n)
i ‖PSi[ε]

(an)−an‖2

∥
∥
∥
∑n

n−q+1 ω
(n)
i PSi[ε]

(an)−an

∥
∥
∥
2 ,

if
∑n

n−q+1 ω
(n)
i PSi[ε](an) �= an,

1, otherwise,

(4)

PSi[ε] stands for the (metric) projection mapping onto the hyperslab

Si[ε], and {ω(n)
i }ni=n−q+1 ⊂ (0, 1] is a set of weights, such that∑n

i=n−q+1 ω
(n)
i = 1. The sequence of mappings (Tn : R

L →
R

L)n∈N encapsulates all the constraints on the signal under study.
Very recent advances, on the study of the recursions (3) and (4) [11],
have revealed that such operators belong to the very general class
of quasi-nonexpansive mappings, with a remarkable flexibility on
describing a large variety of convex constraints. The present study
is the first step beyond [11], to the case where a-priori information
takes the shape of non-convex sets.

In [8], the place of (Tn)n∈N is taken by the projection mappings
onto a sequence of weighted �1-balls. This scheme is equivalent
to coordinate-wise soft thresholding operations. In this paper, we
go one step further by considering sparsity-promoting generalized
thresholding operators. It should be emphasized, that the proposed
thresholding rules are neither restricted to be continues nor to satisfy
the “hard to deal without it” convexity requirement. Our generalized

thresholding (GT) operator T
(K)
GT , which will replace Tn in (3), is

described next.

4. THE GENERALIZED THRESHOLDING OPERATOR

Given a K ∈ 1, L, the Generalized Thresholding (GT) operator

T
(K)
GT : R

L → R
L is defined as follows; for any x ∈ R

L, the

output z := T
(K)
GT (x), is obtained coordinate-wise as follows:

∀l ∈ 1, L, zl :=

{
xl, l ∈ J

(K)
x ,

shr(xl), l /∈ J
(K)
x ,

(5)

where J
(K)
x contains all those positions (indices), which correspond

to the K largest, in absolute value, components of the vector x, and
shr denotes a user-defined shrinkage function. In simple words, GT
acts as follows: given the input vector x ∈ R

L, identify, first, its K
largest, in magnitude, components, while apply to the rest of them

the shrinkage function shr. Define ξ
(K)
x := min{|xl| : l ∈ J

(K)
x }.

That is, ξ
(K)
x stands for one of the K-th largest components, in mag-

nitude, of the vector x. Clearly, ∀l /∈ J
(K)
x , |xl| ≤ ξ

(K)
x . Then,

shr : R → R is required to satisfy the following properties:

1. τ shr(τ) ≥ 0, ∀τ ∈ R.

2. Given ε > 0, there exists a δ > 0 such that ∀τ , which satisfy

ε ≤ |τ | ≤ ξ
(K)
x , we have | shr(τ)| ≤ |τ | − δ. That is, shr

acts as a strict shrinkage operator over the intervals which do

not include 0. The upper bound ξ
(K)
x of the interval is not

restrictive at all; recall that since, by definition, shr applies to
all but the K largest, in magnitude, components of the vector
x, it is natural for the arguments of shr to be less than or equal

to ξ
(K)
x .

Any arbitrary function, which is inline with the properties above,
can be used for shr. Such an example is shown in Fig. 1b. More-
over, shr can be substituted with any thresholding operator which
solves the univariate penalized least squares problem [5,7] with con-
vex or even non-convex penalty functions. Therefore, a number of
well known operators can be directly integrated into the proposed
framework. Examples of such operators are those related to the �γ
penalty, for γ ∈ [0, 1], the log-, the SCAD, the MC+, and the trans-
formed �1 penalties [5, 7]. In Fig. 1c, two examples of the GT are
shown, where as shrinkage function shr the 2-degree garrote (solid
line) and the thresholding function associated with the bridge, �0.5
penalty (dashed line) have been chosen.

It can be verified (omitted due to lack of space) that the sparsity-

cognizant T
(K)
GT associates to a non-convex constraint set. More

specifically, it is intimately connected to the union
⋃

J MJ , where
J is any selection of K positions in an L-dimensional vector, and
MJ := {x ∈ R

L : xl = 0, ∀l /∈ J}. It can be readily verified
that each MJ is a linear subspace of RL, and

⋃
J MJ is thus non-

convex. Despite this fact, it can be shown (omitted due to lack of
space), that under some mild assumptions, the algorithmic scheme

of (3), (4), with Tn substituted by T
(K)
GT , leads to a sequence of esti-

mates (an)n∈N whose set of cluster points is nonempty, each one of
them is guaranteed to be, at most, K-sparse, and located arbitrarily
close to an intersection of an infinite number of hyperslabs Sn[ε].

The developments regarding the proposed GT operator are of
high interest. It is the first time that the specific algorithmic fam-
ily is rendered capable of incorporating non-convex constraints. In
fact, to the best of our knowledge, there is not any adaptive algo-
rithm, of linear computational complexity, capable of dealing with
such constraints. Moreover, the flexibility of the GT can lead to
efficient sparsity inducing thresholding rules targeted to high perfor-
mance implementations of reduced complexity.

A thorough study of the forms that GT can take as well as their
implications in practice is beyond the scope of this paper. Here, we
focus on sparsity-inducing thresholding operators, which lead to re-
duced computational complexity, compared to the previously used
projections onto weighted �1 balls. More specifically, the sparsity
promotion via projections onto weighted �1 balls [8] has the follow-
ing drawbacks: a) it does not lead to estimates with a fixed and pre-
defined sparsity level at each iteration, b) it requires O(L) multipli-
cations and divisions, and c) it requires a full sorting of the unknown
vector values, which takes O(L log2 L) sorting operators.
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Fig. 1. Several thresholding functions.

5. LOW COMPLEXITY SPARSITY INDUCING
OPERATORS

The less complex thesholding rule is inevitably the hard thresholding
(HT) one. In the general context of our GT formulation, the HT rule
becomes: Having an estimate K of the actual sparsity level S, HT
sets all but the largest (in magnitude) K components of x to zero. In
the cases where the K larger components might not be uniquely de-
fined, then the smallest possible indices are chosen. The respective
computational complexity comprises the detection of the Kth order
statistic of x, which can be performed in linear time, O(L). More-
over, HT leads to estimates per iteration with fixed sparsity level,
which is equal to the predetermined value K.

A major drawback of HT is that it sets to exactly zero all the L−
K smaller components. However, such a “strict” strategy may push
to zero coefficients which, actually, belong to the support, especially
at the early stages of the algorithm, prior to convergence, where the
obtained estimates may not be good. A more “gentle” treatment,
would be, instead of zeroing these L − K values, to shrink their
values to some degree. Several such strategies have been proposed in
the literature, with the celebrated SCAD penalty being one of them.
Here, we propose and study a thresholding rule, which is simpler
than the SCAD, referred to as piecewise linear thresholing (PLT)
rule, z = TK

PLT (xn), which operates coordinate-wise as follows:

zi =

⎧⎪⎨
⎪⎩
0, if |xi| ≤ P2

sgn(xi)(|xi| − bP2), if P2 < |xi| ≤ P1

xi, if |xi| > P1

, (6)

where, P1 = ξ
(K)

(x) , P2 = ξ
(2K)

(x) , and b is a free parameter taking

values in [0 1].
Schematically, the PLT operation is shown in Fig. 1d. It can be

observed that it shares common attributes with both hard and soft
thresholding. The major advantage of PLT, is that it can be essen-
tially considered as a multiplication free operator (it needs 1 multi-
plication only). Moreover, similarly to HT, PLT leads to estimates
of fixed sparsity level, equal to 2K.

With respect to computational complexity, the basic recursive
scheme of (3), at each iteration, requires approximately qKn + qLβ
multiplications, where Kn is the sparsity level of the current estimate
and the value of β depends on the specific configuration. Usually in

practice, all ω
(n)
i take the common value 1/q, and also ‖u‖ = 1. In

this case, β = 1. For the APWL1 case, where the sparsity level is not
fixed in each iteration, then the worse case scenario, where Kn = L,
should be considered. On the contrary, for thresholding rules such as

HT and PLT, Kn equals to K and 2K respectively. In other words,
for highly sparse signals, the proposed algorithms roughly halves the
number of required multiplications. On top of that, HT and PLT are
essentially multiplication and division-free operators.

6. SIMULATION EXAMPLES

OCCD-TWL
OCCD-TNWL

b

SpAdOMP

Fig. 2. Performance evaluation in time-constant conditions.

Fig. 2 shows comparison results of the proposed algorithms for

different choices of the sparsity inducing operator T
(K)
GT , where L :=

1024 and S := 100, with the noise variance set equal to σ2 = 0.1.
All the adaptive projection-based algorithms use q = 390, which
was the largest q, after extensive experimentation, that gave the best
performance. Moreover, the extrapolation parameter, μn is set equal

to Mn, [8], each ω
(n)
j is defined to be 1/q, and the hyperslabs pa-

rameter ε := 1.3× σ. In all the cases, the measurement vectors un

are normally distributed.
The performance of the proposed low complexity adaptive

projection-based algorithms, using HT and PLT (referred to as and
APHT and APPLT respectively), is shown with curves indicated
with squares and x-crosses respectively. Parameter b was set equal
to 0.7 since it gave the faster convergence speed. Clearly, PLT
leads to both faster convergence and lower error floor approach-
ing the performance succeeded by the much complex APWL1. In
order to show the potential for further performance improvements
based on GT, the results when using the bridge, �0.5 thresholding
are also depicted (curve denoted by triangles). It is observed that
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this latter configuration led to somewhat faster convergence com-
pared to APWL1. The proposed methods are compared against
state-of-the-art sparsity aware online algorithms, such as the On-
line Cyclic Coordinate Descent - Time Weighted Lasso (OCCD-
TWL) (curve marked with asterisks) and Time and Norm Weighted
LASSO (OCCD-TNWL)(curve marked with crosses) [2]. These
online algorithms are of great interest since they succeed in attaining
performance similar to LASSO using closed form adaptation equa-
tions. Concerning computational complexity, OCCD-TWL needs
more than 2L2 multiplications, whereas OCCD-TNWL roughly
scores the double of that complexity. Moreover, the performance of
SpAdOMP [3], which is considered one of the best low complexity
sparsity aware adaptive algorithms, is shown with the unmarked
solid line. Clearly, SpAdOMP needs many more iterations in order
to converge, so it can not compete with the rest of the algorithms,
which are computationally more demanding. It should be stressed
that the proposed algorithmic scheme is inherently capable of oper-
ating with complexities similar to SpAdOMP, by using low q values.
We have observed, that our algorithm can be especially benefited
with proper choices of GT’s in this low complexity operational
setup. However, in this paper, we focus on large q values, in or-
der to study the proposed algorithms when they achieve their full
performance.

b

b

Fig. 3. Performance evaluation in time-varying conditions.

Fig. 3 shows the ability of the tested algorithms to track an
abrupt change, which is realized after 1500 observations. Particu-
larly, in the first half, the signal under consideration has the charac-
teristics of that discussed in Fig. 2. However, at the mid-time point of
1500, 10 randomly selected components, change their values from
0 to a randomly selected nonzero one. Thus, the signal after 1500
has a sparsity level of 110. In the specific example, K is set equal
to 100, so in the second half, the AP methods operate with an under-
estimate of the true sparsity level. It can be concluded that AP-�0.5
and APHT appear to be more sensitive compared to the rest of the
proposed methods. Moreover, the APPLT, with b = 0.1, reaches
lower error floors, albeit at a slower convergence speed. In general,
it can be seen that the choice of the sparsity inducing operator is a
factor with high potential for the development of efficient variants of
the adopted algorithmic family. For comparison, the OCCD-TWL
with forgetting factor equal to 0.996 is depicted, with the associated
curve marked with asterisks.

7. CONCLUSIONS

A novel online sparsity aware scheme of linear complexity has been
presented, that can deal in a unifying way different thresholding
rules, including nonconvex ones.
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