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ABSTRACT
We consider the particle probability hypothesis density fil-
ter (PPHDF) for tracking multiple targets in urban terrain.
This is a filtering technique based on random finite sets, im-
plemented using the particle filter. Unlike data association
methods, the PPHDF can be modified to estimate both the
number of targets and their corresponding tracking param-
eters. We propose a modified PPHDF algorithm that em-
ploys multipath-to-measurement association (PPHDF-MMA)
to automatically and adaptively estimate the available types
of measurements. By using the best matched measurement at
each time step, the new algorithm results in improved radar
coverage and scene visibility. Numerical simulations demon-
strate the effectiveness of the PPHDF-MMA in improving the
tracking performance of multiple targets and targets in clutter.

Index Terms— Urban terrain, multiple target tracking,
probability hypothesis density filter, particle filter.

1. INTRODUCTION

In dense urban environments, most conventional radar track-
ing systems begin to fail due to the absence of line-of-sight
returns, and the presence of multipath interference, obscura-
tion from buildings, and high clutter [1]. Recently, waveform
agile sensing has been integrated with multipath exploitation
to further improve tracking performance in urban terrain [2].
Moreover, the problem of multiple target tracking is to instan-
taneously estimate both the number of targets present as well
as each target’s trajectory. Conventional multiple target track-
ing filtering techniques first couple the correct measurement
to existing tracks through measurement-to-track associations
and then estimate the target states using single target tracking
techniques [3]. The most general data association method,
multiple hypothesis tracking (MHT) [4], although exhaustive,
is very computationally expensive [5]. As an alternative, the
joint probabilistic data association (JPDA) method estimates
the states by summing all the association hypothesis weighted
by the probabilities from the likelihood [6]. Unfortunately,
it requires that the number of targets is fixed and its per-
formance is poor when the targets are close to each other
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[7]. The probability hypothesis density filter (PHDF) is a
suboptimal but computationally tractable algorithm for mul-
tiple target tracking without data association [8]. It can also
be implemented using sequential Monte Carlo methods such
as particle filtering (PPHDF) [9]. Recently, the PPHDF was
combined with data association to identify the trajectories of
different targets [10]. In this paper, we propose a PPHDF
with multipath-to-measurement association (PPHDFA) that
can decide on the best matched measurement return path at
each time step in realistic scenarios.

2. TRACKING IN URBAN ENVIRONMENTS

For target tracking in urban environments, we consider two
possible target state models: nearly constant velocity (NCV)
model and coordinated turn (CT) model, that assumes that
a target turns left or right with nearly constant velocity and
nearly constant angular turning rate. [11]. The state vector
xk at time step k is given by xk =Fxk−1 + nk, where nk is
a modeling error zero-mean Gaussian random process and F

depends on the state model [2].
An example urban scene of a target moving between two

buildings is depicted in Fig. 1. We assume that the walls of
the buildings are perfectly smooth so that all reflections can
be assumed specular (that is, the angle of incidence equals
the angle of reflection). The three-dimensional (3-D) Carte-
sian coordinates of the location of the radar receiver are given
by (xR, yR, zR), the transmitter and receiver are assumed to
be stationary and collocated, the location and velocity of the
target at time k are given by (xk, yk, zk) and (ẋk, ẏk, żk),
respectively, and H is the street width. The measurement
equation corresponding to the LOS return path depends on
the range r0,k = ((xk − xR)2 + (yk − yR)2 + (zk − zR)2)1/2

and range rate ṙ0,k = (ẋk(xk − xR) + ẏk(yk − yR)+ żk(zk −
zR))/r0,k. The measurement equation due to the multipath
returns depends on the number of reflections off different ob-
jects. In this case, the range from the radar to the target after
m bounces off the ith building, i = 1, 2, is given by

rm,k,i = ((xk − xR)2 + (zk − zR)2)1/2 +[
(−1)m+1

(
2 [m/2]iH − (−1)i+1 yk

)
− yR

]2
. (1)

It is assumed that the first bounce is off the ith building, with
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Fig. 1. Urban scene:target moving between two buildings.

[m/2]1 = �m/2� and [m/2]2 = �m/2� [2]. The range-rate
is obtained as the derivative of the range in (1) with respect
to time. Note that no return is observed at the receiver when
shadowing or obscuring occurs.

The measurement model is given by zk =hk(xk) + wk,
where wk is a zero-mean Gaussian noise process with covari-
ance matrix Rk, and hk(xk) is given by

hk(xk) =

[
r0,k r1,k · · · rPk,k

ṙ0,k ṙ1,k · · · ṙPk,k

]
,

where rp,k and ṙp,k are the range and range-rate measure-
ments of the pth path at time step k, p = 1, . . . , Pk, respec-
tively, and Pk is the total number of paths at time step k.

3. PROBABILITY HYPOTHESIS DENSITY FILTER

We assume that a target generates only one observation at
each time step k, and that each target generates measure-
ments independently of each other. Assuming Nk targets at
time k, the multiple-target state random finite set (RFS) is
given by Xk = {xk,1 , . . . ,xk,Nk

}. The multiple target mea-
surement RFS at time k is Zk = {zk,1 , . . . zk,Mk

} where Mk

is the number of measurements at the receiver at time k. Here,
xk,i is the unknown state of the ith target and zk,i is the
corresponding measurement at time step k. Note that there
may be more measurements than targets at any given time k
since measurements may also be obtained from clutter. Given
Xk−1 at time (k − 1), Xk is formed by combining the sur-
viving and spawned target RFS, X(surv)

k|k−1 and X
(spn)
k|k−1, respec-

tively, from the previous time step (k − 1), and the spon-
taneous target birth RFS X

(birth)
k . Also, due to the presence

of clutter, the received multiple-target measurement RFS Zk

is formed by the combination of two types of measurement
RFS: Z

(trg)
k generated by the existing targets and Z

(clt)
k gener-

ated by false alarms or clutter at time k. It is assumed that the
clutter RFS is independent of the target measurement RFS and
that the target measurement RFS are mutually independent.

The PHDF assumes that the predicted multiple-target pos-
terior density p(Xk|Zk−1) can be completely characterized

by the corresponding intensity function λ(xk|Zk−1). Thus,
given the posterior intensity λ(xk−1|Zk−1) at time step (k −
1), the predicted intensity λ(xk|Zk−1) can be obtained as

λ(xk|Zk−1) =

∫
[ P(surv)

k|k−1(xk−1) p(xk|xk−1) +

λ(spn)(xk|Zk−1) ]λ(xk−1 |Zk−1) dxk−1 + λ(birth)(xk|Zk) ,

where λ(spn)(xk|Zk−1) is the intensity of the targets spawned
at the previous time step (k−1), λ(birth)(xk|Zk) is the intensity
of new target births, and P(surv)

k|k−1(xk−1) is the probability that
a target present at time step (k − 1) will survive to time step
k. The posterior intensity is given by

λ(xk|Zk) = (1 − P(det)
k (xk))λ(xk|Zk−1) +∑

zk∈Zk

PD
k (xk) p(zk|xk) λ(xk|Zk−1)

λ(clt)(zk) +
∫

P(det)
k (x̃k) p(zk|x̃k)λ(x̃k|Zk−1) dx̃k

where λ(clt)(zk) is the clutter intensity and P(det)
k (xk) is the

probability of detecting a target at time k.
In maneuvering target tracking, the target may change its

motion model at any time, according to a transitional prob-
ability matrix Π = {πmn} [12]. The model number �(i)

k of
the ith particle, i = 1, . . . , Lk at time k, follows the transi-
tional matrix, where Lk is the number of particles that still
exist at time k. Specifically, if at time k − 1 a particle has
model index numberm =�(i)

k−1, then at time k, the model in-
dex transfers to model number n with probability πmn. The
multiple-model particle filter is used to generate �(i)

k from

�
(i)
k−1 according to the transitional matrix Π.

4. PPHDF FOR URBAN ENVIRONMENTS

Although the PPHDF avoids conventional data association,
it requires prior knowledge of path-to-measurement associa-
tions [9]. Specifically, at the receiver, when the radar observes
all range-range rate pairs, it is assumed that it can success-
fully distinguish which range-range rate pair corresponds to
the different paths. In practice, however, the matched filter
may not receive path information in any particular order.

We propose a modified version of PPHDF with multipath-
to-measurement association (PPHDF-MMA) that can be used
to automatically and adaptively estimate the measurement
types available at each time step. This is done by associating
the ith particle at time k to a possible path parameter ρ(i)

k . If
the particle is due to a target spawned from the previous time
step, then the new prediction process can be updated using

x
(i)
k , ρ

(i)
k ∼ qk(·|x

(i)
k−1,Zk, �

(i)
k ), i = 1, . . . , Lk−1

w
(i)
k|k−1 =

φk|k−1(x
(i)
k ,x

(i)
k−1)w

(i)
k−1

qk(x
(i)
k |x

(i)
k−1,Zk)

, i = 1, . . . , Lk−1
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where Lk−1 is the number of particles from the previous step.
If the particle is due to a newly appeared target, then the pre-
diction process can be updated using

x
(i)
k , ρ

(i)
k ∼ pk(·|Zk), i = Lk−1 + 1, . . . , Lk−1 + Jk

w
(i)
k|k−1 =

λ(birth)(x
(i)
k |Zk)

Jk pk(x
(i)
k |Zk)

, i = Lk−1 + 1, . . . , Lk−1 + Jk,

where Jk is the number of particles needed to represent the
new birth target RFS and φk|k−1(x

(i)
k ,x

(i)
k−1) = P(surv)

k|k−1(x
(i)
k−1)

p(x
(i)
k |x

(i)
k−1) + λ(sp)(x

(i)
k |Zk−1).

When the radar observes all the range-range rate pairs, the
proposed filter updates the particle weights as

w
(i)
k|k−1 =

[
1 − P(det)

k (x
(i)
k ) +

∑
zk∈Zk

ψk,zk
(x

(i)
k , ρ

(i)
k )

λ(clt)(zk) + Ck(zk)

]
w

(i)
k|k−1

where Ck(zk) =
∑Lk−1+Jk

j=1 ψk,zk
(x

(j)
k , ρ

(j)
k ) w

(j)
k|k−1 and

ψk,zk
(x

(j)
k , ρ

(j)
k ) = P(det)

k (x
(j)
k )gk(zk|x

(j)
k , ρ

(j)
k ). The likeli-

hood gk(zk|x
(j)
k , ρ

(j)
k ) is calculated by first generating an-

other prediction RFS according to the jth particle x
(j)
k and

its path index parameter ρ(j)
k , whose elements are all the pos-

sible range-range rate pairs corresponding to particle x
(j)
k .

Then, the likelihood of each element in the generated pre-
diction RFS is calculated individually and the largest one is
selected. From the particle representation of the posterior
intensity after resampling, the states of the individual targets
are estimated using a clustering algorithm such as k-means.
The average error distance is then calculated and compared
to a threshold. Finally, the number of targets is equal to the
number of clusters, and the estimated target states correspond
to the centroid of each cluster.

5. SIMULATIONS

In order to demonstrate the performance of the proposed algo-
rithm, we provide simulations for tracking multiple targets in
urban terrain. Our numerical simulations are based on a 3-D
environment, consisting of three buildings, an airborne radar,
1.4 km in height, located about 8 km southeast of the scene.
The targets considered in the simulations are ground vehicles
moving in 2-D. Each target can switch between a constant
velocity or coordinated turn model with angular turning rate
ω =−2. The process noise intensity coefficient was chosen
to be 0.04 and the probability of target survival is 0.95. The
PPHDF and PPHDF-MMA algorithms used 2,000 particles
for each target. The clutter RFS is considered to be Pois-
son, and each clutter is assumed to be uniformly distributed
in the region [−50, 150] × [−100, 50]. The clutter density is
assumed to be 3.33× 10−4, resulting in an average rate of 10
points per scan. We consider the results of two different sim-
ulations, both based in the urban scene depicted in Fig. 2 that

Fig. 2. Measurement map of simulated urban terrain [2].

includes LOS regions, one-bounce regions, two one-bounce
regions, and shadow regions [2].
Case 1: Two targets moving in the same direction. We
assume that that there are two ground vehicles, whose loop
trajectory and starting points are marked in the measurement
map in Figure 2. In this example, we assumed that there is
no spawning and that no new targets appear. The simula-
tions results, shown in Figure 3, demonstrate the estimation
performance and mean-squared error (MSE) of the proposed
PPHDF-MMA algorithm based on 300 Monte Carlo simula-
tions. Note that, as expected, due to no signal returns, the
target track is lost when a target enters the shadowing region.
The MSE error is small when the target is in the LOS region or
in the LOS plus one-bounce region; the error increases when
the target is in the one-bounce or two one-bounce regions.
Case 2: Time varying number of targets moving in dif-
ferent directions. Figure 4 shows the measurement map and
true trajectory that initially assumed that there are 2 targets,
moving in the same direction. Then, at time step k=5, a new
target appears and moves in the opposite direction of the two
targets; at k=12, a target leaves the scene and at k=15 an-
other target leaves the scene. No spawning is assumed; new
born targets are assumed to have Gaussian distributions. The
simulations results, based on 100 Monte Carlo simulations,
are shown in Figure 5. From Figure 5(d), other than in the
shadow region, the proposed algorithm can accurately esti-
mate the time-varying number of targets.

6. CONCLUSIONS

We demonstrated the applicability of the PPHDF for tracking
multiple targets in urban environments. We proposed a modi-
fication to the algorithm to address the realistic scenario of as-
sociating measurements with different paths at each time step
in the complex urban scene. Using simulations, we demon-
strated that the resulting algorithm can adaptively estimate the
type of measurement at each time step so that we can track
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Fig. 3. (a)-(d) PPHDF-MMA estimated positions and veloci-
ties; Target 1 (e) position and (f) velocity MSE for Case 1.

both the number of targets as well as their parameters.
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