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ABSTRACT

Anomaly detection in graphs is a relevant problem in numerous ap-
plications. When determining whether an observation is anoma-
lous with respect to the model of typical behavior, the notion of
“goodness of fit” is important. This notion, however, is not well-
understood in the context of graph data. In this paper, we pro-
pose three goodness-of-fit statistics for Chung–Lu random graphs,
and analyze their efficacy in discriminating graphs generated by the
Chung–Lu model from those with anomalous topologies. In the re-
sults of a Monte Carlo simulation, we see that the most powerful
statistic for anomaly detection depends on the type of anomaly, sug-
gesting that a hybrid statistic would be the most powerful.

Index Terms— Graph theory, signal detection theory, anomaly
detection, goodness of fit, probabilistic models

1. INTRODUCTION

A graph G = (V, E) is defined as a set of vertices (V ) that are
interconnected by a set of edges (E). Graphs are useful in many ap-
plications in which relationships (edges) between entities (vertices)
are of interest. As they are used in a wide variety of disciplines, the
problem of anomaly detection in graphs has gained significant in-
terest in the past several years (see, e.g., [1]). Detecting anomalies
in a graph’s topology is relevant to a host of applications, such as
the detection of strange or malicious behavior in computer or social
networks.

Recent work has focused on developing a statistical detection
framework for graphs, akin to that for Euclidean data [2, 3]. The
central tool of this framework is the modularity matrix [4]. The mod-
ularity matrix B of an unweighted, undirected graph G is defined as

B = A − kkT

2|E| .

Here A is the adjacency matrix of G, where the entry in the ith row
and jth column of A is 1 if {vi, vj} ∈ E and is 0 otherwise; and k
is the degree vector of G, with the ith entry in k being the number
of edges adjacent to vertex i. In a random graph in which the proba-
bility of an edge between two vertices is proportional to the degrees
of the associated vertices, kkT /(2|E|) is the expected value of A.
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Thus, we consider the modularity matrix a graph “residuals” matrix,
representing the difference between the observed and expected adja-
cency matrices.

This interpretation broaches an important topic in signal detec-
tion: goodness of fit. Given an observation, it is useful to understand
how well the data fit the assumed model of “normal” behavior. While
this notion is well understood for linear models, it is not at all mature
in the context of graphs. The purpose of this paper is to investigate
the use of goodness-of-fit statistics in a specific random graph model
to determine whether or not an observed graph was generated by that
model, i.e., to reject the hypothesis that the graph was generated un-
der the model if the data do not properly fit.

The remainder of this paper is organized as follows. In Sec-
tion 2 we describe our problem model, including our null model,
the Chung–Lu random graph; and several anomalous alternatives.
Section 3 introduces the goodness-of-fit statistics we use to test our
observations. Section 4 presents empirical results, demonstrating
detection performance for each statistic paired with each alternative
model. We discuss interesting phenomena observed in the results in
Section 5, and in Section 6 we summarize and outline future work.

2. PROBLEM MODEL

2.1. The Chung–Lu Model

In this work, we focus on determining whether or not an observed
graph is generated by the Chung–Lu random graph model [5]. Under
this model, an unweighted, undirected graph G is created according
to the following process. Each vertex v ∈ V is given an expected
degree dv . The probability that an edge occurs between two vertices
v, u ∈ V is equal to

dvduP
x∈V dx

,

that is, it is proportional to the product of the vertices’ expected de-
grees. (It is easily verified that the probabilities of edges adjacent to
v sum to dv .) We allow self-loops (edges from a vertex to itself), as
it simplifies our analysis, although an extension to the case without
these edges is possible. This model requires that the largest expected
degree of any vertex be at most the square root of the sum of all ex-
pected degrees, so that no probability is greater than 1.

In an alternative formulation, we assign each vertex v a weight
wv ∈ [0, 1]. The two definitions are equivalent, with the change in
parameters given by

wv =
dvqP
u∈V du

and dv = wv

X
u∈V

wu.
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In matrix form, let w ∈ [0, 1]|V | be a vector of weights. Then the
expected value of the adjacency matrix A of a graph generated by
the Chung–Lu model with weights w is given by E[A] = P =
wwT . We will refer to P as the probability matrix for the graph,
which is equal to the expected value since each edge is the result of
a Bernoulli trial with a 0-or-1 outcome.

Given this probability structure, certain subgraphs or topologies
are unlikely to occur. We now discuss the alternative models that we
wish to reject as being non-Chung–Lu.

2.2. Alternative Models

Two alternatives start with a Chung–Lu background graph, and con-
nect it to an anomalous subgraph, i.e., a subgraph that violates the
assumptions of the Chung–Lu model. In both cases, the probability
matrix of the graph has the form

P =

 
pin1Ns1

T
Ns

pout1Ns1
T
Nb

pout1Nb1
T
Ns

wbw
T
b

!
.

Here 1N is a column vector of N ones, Nb is the number of back-
ground vertices, Ns is the number of anomalous subgraph vertices,
and wb ∈ [0, 1]Nb is the vector of weights for the Chung–Lu back-
ground. The values for pin and pout are, respectively, the probability
of an edge between two subgraph vertices and the probability of an
edge between a subgraph vertex and a background vertex. Note that
the expected degree of a vertex in the subgraph is

pinNs + poutNb, (1)

and the expected degree of vertex i in the background is

poutNs + wb(i)‖wb‖1, (2)

where wb(i) is the ith entry in wb.
Manipulating these values, we can create a topology that is un-

likely to occur under a Chung–Lu model. If we let pin be large and
pout be small, then the subgraph will be a tightly-connected cluster
with little connectivity to the background. Conversely, if we let pout

be large and pin be small, then the subgraph will consist of high-
degree vertices that are unlikely to be connected to each other. Both
of these phenomena are anomalous under the Chung–Lu model. In-
deed, considering an extreme case in which pin = 1 and pout = 0,
the subgraph vertices will have degree Ns, but will never be con-
nected to any background vertices, regardless of their expected de-
gree. At the opposite extreme, we may set pin = 0 and adjust pout

so that, under the Chung–Lu model, the probability of an edge be-
tween subgraph vertices is arbitrarily close to 1. We will refer to the
high pin, low pout case as a cluster anomaly, and the high pout, low
pin case as a hubs anomaly.

We are also interested in cases where the graph is anomalous
throughout its topology, and for this purpose we use the R-MAT
Kronecker graph [6]. An R-MAT graph is generated by an iterative
procedure where at each iteration, an edge is selected according to a
probability matrix defined by the n-fold Kronecker product of a 2×2
probability matrix. This procedure continues for a fixed number of
iterations or until the graph has a certain number of edges. (Since
we are dealing with unweighted, undirected graphs, we do not in-
crease the weight if an edge is chosen multiple times, and we use the
“clip-and-flip” procedure from [6] to undirect the graph.) The proba-
bility matrix for this alternative does not have the rank-1 structure of
a Chung–Lu graph, and this should create a topology unlikely under
the Chung–Lu model.

3. TEST STATISTICS

As discussed in [7], while goodness of fit is an important concept
in statistical modeling, this concept is underdeveloped in the context
of graphs. In this section we propose 3 goodness-of-fit statistics for
Chung–Lu graphs that we will use in our experiments.

3.1. Spectral Norm (SN)

Our first test statistic measures how far the observed graph is from its
expected value. We use the spectral norm of the difference between
the adjacency matrix and its expected value, i.e.,

‖A − E[A]‖ = ‖A − wwT ‖.
This is the maximum eigenvalue (in terms of absolute value) of the
matrix consisting of the observed minus expected edges in the graph.
If the observed degree vector k is equal to the expected degree vector
d, then this is the same as the maximum eigenvalue of the graph’s
modularity matrix.

3.2. Least Squares Coefficient (LSC)

Another metric for the difference between the observed and expected
graph is the least squares coefficient, that is, the coefficient that op-
timally fits the observed graph to the expectation in a least squares
sense. This statistic is expressed as

arg min
γ

‖A − γwwT ‖F ,

with the optimal value given by

γmin =
wT Aw

‖w‖4
2

.

One convenient property of this statistic is that it is relatively easy to
analyze. It is not difficult to show that, under the Chung–Lu model,
the expected value of γmin is 1, and its variance is

Var(γmin) =
2‖w‖6

3 − 2‖w‖8
4 − ‖w‖6

6 + ‖w‖8
8

‖w‖8
2

. (3)

3.3. Minimum Neighborhood Likelihood (MNL)

The final statistic is derived from the probability that a given graph
G would be created by a Chung-Lu model with a weight vector w.
The likelihood of an observed graph under the Chung–Lu model is
expressed as

|V |Y
i=1

|V |Y
j=i

((Aijwiwj) + (1 − Aij)(1 − wiwj))),

where Aij is the entry in the ith row and jth column of the adjacency
matrix. For the types of non-Chung–Lu behavior we examined, how-
ever, the graph likelihood was ineffective at distinguishing between
the Chung-Lu and alternative models. We refined this statistic in an
attempt to improve its detection power. Rather than the likelihood of
the entire graph, we use the least likely 1-hop vertex neighborhood.
The minimum neighborhood likelihood for an observed graph is

min
i

|V |Y
j=1

((Aijwiwj) + (1 − Aij)(1 − wiwj)) .
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True Weights Estimated Weights

Alternative SN LSC MNL SN LSC MNL

AUC EER AUC EER AUC EER AUC EER AUC EER AUC EER

R-MAT-1 0.561 0.538 0.555 0.541 0.483 0.489 0.558 0.537 0.785 0.713 0.483 0.487

R-MAT-2 0.758 0.688 0.981 0.931 0.730 0.668 0.716 0.657 1.000 1.000 0.724 0.659

R-MAT-3 0.998 0.983 0.547 0.532 0.440 0.447 0.999 0.985 0.957 0.886 0.426 0.448

Cluster 0.981 0.943 0.509 0.506 0.496 0.497 0.977 0.933 0.597 0.568 0.495 0.497

Hubs 0.685 0.635 0.882 0.799 0.711 0.656 0.656 0.614 0.999 0.987 0.717 0.660

Table 1. Equal-error rate and area under the curve performance for the 3 test statistics, using given and estimated weights. For each alternative
model, the most powerful statistic in terms of EER is highlighted.

4. EXPERIMENTAL RESULTS

In each of the following experiments, we ran a 10,000-trial Monte
Carlo simulation under the null model and one of the alternatives,
and computed our test statistics for each graph. For the cluster and
hub alternatives, we first generate a 1024-vertex R-MAT graph with
average degree 10, and use the degree vector of this graph to compute
the background weights wb, yielding a background with a powerlaw
degree distribution. For the cluster anomaly, we use 8 vertices with
pin = 0.9375 and pout = 2/(8 · 1024), resulting in a subgraph
with an average internal degree of 7.5 and 2 edges, in expectation,
between the background and the subgraph. For the hubs anomaly, we
add 5 vertices with pin = 1/25 and pout = 0.065, yielding expected
external degrees of over 66 and 0.6 expected internal edges. In both
cases, we compare the resulting alternative models to a Chung–Lu
graph whose expected degree vector is computed by equations (1)
and (2). We are, thus, comparing the test statistics of two random
graphs with the same expected degree vector.

For the R-MAT alternatives, we use 3 base probability matrices,

p1 =

„
0.3 0.238

0.238 0.224

«
, p2 =

„
0.2 0.2
0.2 0.4

«
,

and p3 =

„
0.35 0.1625

0.1625 0.325

«
,

and we will refer to the models resulting from these as R-MAT-1,
R-MAT-2 and R-MAT-3, respectively. In each case, we used the 10-
fold Kronecker product to define the edge probability matrix (result-
ing in a 1024-vertex graph), and ran the algorithm for 10240 itera-
tions. Letting p̂ij be the proabability of an edge between vertex i and
vertex j being added in a single iteration, the probability of an edge
occurring between these vertices before the algorithm terminates is

pij = 1 − (1 − p̂ij)
10240.

For the Chung–Lu graphs we compare to the R-MAT graphs, we use
the expected degree vector given by di =

P
j pij , again making the

expected degree vectors the same for the null and alternative models.

Since, in an anomaly detection problem, we may not have access
to the true model parameters, we evaluate performance with both
given and estimated weights. For an estimated weight vector, we use
the simple, closed-form estimator

ŵ = k/
p

2|E|,

i.e., we substitute the observed degree for the expected degree.

Receiver operating characteristic (ROC) curves for these simu-
lations are shown in Fig. 1, with performance summarized in terms

of equal-error rate (EER) and area under the curve (AUC) in Ta-
ble 1. Using the R-MAT-1 alternative, which has the most bal-
anced probability matrix, detection performance is little better than
chance except using LSC with estimated weights. For R-MAT-2,
which is much more biased toward one corner of the probability
matrix, all statistics have better-than-chance detection performance,
with LSC yielding near-perfect detection with estimated and given
weights (again, better performance with estimated weights). One
interesting observation is that while MNL is somewhat effective at
discriminating Chung–Lu from R-MAT graphs in this case, the min-
imum likelihood is actually higher (i.e., less unlikely) under the al-
ternative (we account for this in Table 1). For MNL and SN, perfor-
mance with given and estimated weights is similar. For R-MAT-3,
in which the probability matrix is much more concentrated on the
diagonal, the spectral norm is the most powerful statistic. The least
squares coefficient with estimated weights is a close second, with the
other cases not much better than chance.

For the other two alternatives, we see similar trends. For the
cluster anomaly, like the R-MAT-3 case, we get excellent detection
performance with SN, followed by LSC with estimated weights, and
near-chance for all others. For hubs we see a simimlar behavior
to R-MAT-2, with near-perfect detection using LSC with estimated
weights, good performance for LSC with given weights, and lower,
but still better-than-chance, performance for the other statistics.

5. DISCUSSION

One particularly intriguing phenomenon in the results is the signifi-
cant increase in anomaly detection performance using the estimated
weights rather than given weights for the LSC statistic. On closer in-
spection, the distribution of test statistics (under both the null and al-
ternative models) using estimated weights has about the same mean
as when the true weights are used, but the variance is much tighter;
in all cases at least a factor of 7 lower. Using the true weights, we
confirm that the sample variance in the simulation data is very close
to (3). The variance of the LSC statistic with estimated weights is
expressed as

E

" P
i

P
j

P
� Aijkikjk�P

i

P
j k2

i k2
j

!2#
−E

"P
i

P
j

P
� Aijkikjk�P

i

P
j k2

i k2
j

#2

.

Analysis of this quantity is complicated and beyond the scope of this
paper, but an additional Monte Carlo simulation confirms that, for
the degree distributions in these experiments, it is much smaller than
the variance expressed in (3).

Considering the two cases in which SN is the most powerful
statistic, it is notable that R-MAT-3 is the R-MAT with the most clus-
tering (i.e., with the 2×2 probability matrix that puts most entries in
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the lower right or upper left quarters). Due to this probability struc-
ture, the resulting alternative graph will be partitioned, like the clus-
ter anomaly, in a way such that connections within the two partitions
are much more likely than those across the partition. Eigenspace
techniques have long been associated with graph partitioning, and
the same underlying phenomena may be at work here.

Finally, considering the MNL statistic under R-MAT-2, we
would like to understand why the lowest neighborhood likelihood is
larger under the alternative than under the null model. Looking at
the probability matrices for the null and alternative models, we see
that, around certain high-degree vertices, the R-MAT model further
biases the graph to have edges with high likelihood under Chung–
Lu. Since high-degree vertices tend to have the lowest likelihoods
(due to the probability of occurrence for any particular edge being
rather small), this causes higher minimum likelihoods under the
alternative, resulting in the behavior we see in Fig. 1b.

6. SUMMARY

In this paper we investigate the use of goodness-of-fit statistics to
reject the hypothesis that an observed graph was generated by a par-
ticular model, specifically the Chung–Lu random graph model. We
propose 3 goodness-of-fit statistics and analyze their power to dis-
criminate between Chung–Lu graphs and several alternative models.
Simulation results demonstrate that the spectral norm of the graph
residual performs the best when there is a partitioning of the nodes
in which internal connectivity is much more likely than connectiv-
ity across the partition, while a least squares fitting coefficient is the
most powerful statistic in other cases. Future work will include a
deeper theoretical study of the test statistic distributions, as well as
the integration of several statistics to optimize detection power.
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Fig. 1. ROC curves demonstrating the power of the 3 test statistics
to discriminate between graphs generated by a Chung–Lu model and
those generated by one of the 5 anomalous alternatives.
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