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ABSTRACT

We consider the small sample composite hypothesis testing

problem, where the number of samples n is smaller than the

size of the alphabet m. A suitable model for analysis is the

high-dimensional model in which both n and m tend to infin-

ity, and n = o(m). We propose a new performance criterion

based on large deviation analysis, which generalizes the clas-

sical error exponent applicable for large sample problems (in

which m = O(n)). The results are:

(i) The best achievable probability of error Pe decays as

− log(Pe) = (n2/m)(1 + o(1))J for some J > 0,

shown by upper and lower bounds.

(ii) A coincidence-based test has non-zero generalized er-

ror exponent J , and is optimal in the generalized error

exponent of missed detection.

(iii) The widely-used Pearson’s chi-square test has a zero
generalized error exponent.

(iv) The contributions (i)-(iii) are established under the as-

sumption that the null hypothesis is uniform. For the

non-uniform case, we propose a new test with non-

zero generalized error exponent.

Index Terms— chi-square test, high-dimensional model,

goodness of fit, large deviations, composite hypothesis testing

1. INTRODUCTION

Composite hypothesis testing problems with small number

of samples arise in many applications, such as security and

biomedical research. To evaluate a test for these problems,

since the exact formula for probability of error is usually com-

plicated, we use asymptotic models and performance criteria

that are both insightful and analytically tractable. One such

approach is the so-called high-dimensional model, in which

the number of samples n and the size of the alphabet m both

increase to infinity.
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A widely-used performance criterion is asymptotic consis-

tency: Given some dependency of m on n, does the proba-

bility of error tend to zero as n,m tend to infinity? We then

consider finer questions, such as the rate of convergence.

To this end, inspiration can be found in the criteria used

for large sample problems, in which m is usually fixed or

grows very slowly with n. A classical criterion is the error

exponent: if the probability of error of a test decreases expo-

nentially fast with respect to n, i.e., Pe ≈ exp{−nI}, then

the rate I is called the error exponent. The popularity of the

Generalized Likelihood Ratio Test (GLRT) for the composite

testing problem, is partly due to the fact that it has optimal er-

ror exponent for fixed m [1]. On the other hand, for the small

sample case where m grows very fast, the probability of error

does not decay exponentially fast with respect to n; thus the

classical error exponent concept is not applicable.

The goal of this paper is to demonstrate that the error ex-

ponent criterion can be extended to the small sample case and

offers insights that are not available from asymptotic consis-

tency, or criteria based on the central limit theorem.

1.1. Problem statement
Consider the following composite hypothesis testing prob-

lem: An i.i.d. sequence Zn
1 = {Z1, . . . , Zn} is observed,

where Zi ∈ [m] := {1, 2, . . . ,m}. Denote the set of prob-

ability distribution over [m] by P([m]). The null hypothesis

H0 is simple: Zi has a uniform distribution π over [m] (ex-

tensions to the non-uniform case are given in Section 4). The

alternative hypothesis H1 is a composite one: Zi has a un-

known distribution μ ∈ Πm, which is given by

Πm = {μ : d(μ, π) ≥ ε} (1)

where d is the total-variation metric:

d(μ, π) = sup{|μ(A)− π(A)| : A ⊆ [m]} = 1
2‖μ− π‖1.

A test φ = {φn}n≥1 is a sequence of binary-valued function

φn : [m]n → {0, 1}. It decides in favor of H1 if φn = 1 and

H0 otherwise. Its performance is evaluated using the proba-

bility of false-alarm and worst-case probability of missed de-

tection, defined respectively by

PF (φn) = Pπ{φn = 1}, PM (φn) = sup
μ∈Πm

Pμ{φn = 0}.
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In the large sample case where m = O(n), the following error

exponent criterion has been used to evaluate a test φ:

IF (φ) :=− lim sup
n→∞

n−1 log(PF (φn)),

IM (φ) :=− lim sup
n→∞

n−1 log(PM (φn)).
(2)

In the small sample case where n = o(m), this classical

error exponent criterion given in (2) is not applicable since it

is zero for all possible test. Our results imply that one should

consider the following generalization, defined with respect to

the normalization r(n,m) = n2/m:

JF (φ,m) :=− lim sup
n→∞

r−1(n,m) log(PF (φn)),

JM (φ,m) :=− lim sup
n→∞

r−1(n,m) log(PM (φn)).
(3)

The limits (but not r(n,m)) could depend on how m increases

with n, represented by the second argument m in the notation

of JF and JM . Note that to have a consistent test, it is neces-

sary that m = o(n2) ([2]); thus r(n,m) tends to infinity.

For the definition in (3) to be meaningful, we need

(i) There exists a test φ for which min{JF , JM} is

bounded away from zero, uniformly for all sequences

m satisfying m = o(n2) and n = o(m).

(ii) For any test φ, min{JF , JM} is finite.

Precise statements are provided in Section 2.

The rest of the paper is organized as follows: Reviews of

related work are given Section 1.2; The main results and pre-

liminary analysis are contained in Section 2; The classical

Pearson’s chi-square test is shown to have a zero error expo-

nent in Section 3. In Section 4, a new test for the case where π
is not uniform is proposed and shown to have non-zero error

exponents. Numerical results are presented in Section 5.

1.2. Related work
Three types of analysis of a test’s performance are asymptotic

consistency, Central Limit Theorem (CLT), and large devia-

tion (error exponents). The existing results can be divided,

according to the dependency of m on n, into three regimes:

1) fixed m. 2) m = O(n). 3) n = o(m). Representative

works in each regime and criterion are listed:

fixed m m = O(n) n = o(m)

consistency well-known well-known [2][3]

CLT [4] [5] [5]

error exponent [1] [6] this paper

Their main results are summarized as follows:

[2] There is an asymptotically consistent test if and only if

m = o(n2);
[3] There is a test using n = O(m0.5polylog(m)) samples

regardless of whether the null distribution is uniform.
[4] Pearson’s test statistic is asymptotically χ2-distributed;
[5] When ε � m−0.5 (CLT analysis), Pearson’s chi-square

test is asymptotically minimax;
[1] GLRT has optimal error exponents for fixed m;
[6] There exists a test with nonzero classical error exponents

(see (2)) if and only if m = O(n).

2. MAIN RESULTS

The main results require the following assumptions:

Assumption 1. π is the uniform distribution over [m].

Assumption 2. n = o(m) and m = o(n2).

Under Assumption 1 and 2, the following results hold:

Theorem 2.1 (Achievability). The following pair of general-
ized error exponents are achievable by the coincidence-based
test φK given in Section 2.1: For τ ∈ [0, κ(ε)],

JF (φ
K) = sup

θ≥0
{θτ − 1

2 (e
2θ − 1− 2θ)},

JM (φK) = sup
θ≥0

{θ(κ(ε)−τ)− 1
2 (e

−2θ− 1 + 2θ)(1 + κ(ε))}
where

κ(ε) =

{
ε

1−ε , ε ≥ 0.5,

4ε2, ε < 0.5.
(4)

Theorem 2.2 (Converse). For any test φ satisfying

lim
n→∞PF (φn) = 0, (5)

the following upper-bound on the generalized error exponent
of missed detection holds:

JM (φ,m) ≤ J̄(ε).

where
J̄(ε) = 1

2

(
κ(ε)− log(1 + κ(ε))

)
. (6)

Corollary 2.3 (Optimality of coincidebased test). The coin-
cidence based test achieves the upper-bound in Theorem 2.2:

lim
n→∞PF (φ

K
n ) = 0, JM (φK) = J̄(ε),

where J̄(ε) is given in (6).

We remark that

(i) The main results hold for any possible sequences m
satisfying Assumption 2 (hence we dropped the argu-

ment m). An example is m = nα where 1 < α < 2.

(ii) Corollary 2.3 implies that the upper-bound is tight

when PF is only required to satisfy (5).

(iii) For other tests, the value of JF (φ,m) and JM (φ,m)
might depend on the sequences m. For example, given

two tests with different generalized error exponents,

the third test that switches between these tests accord-

ing to the sequence m has generalized error exponents

that depend on m.

2.1. Achievability
Consider the coincidence-based statistic introduced in [2]:

Kn =

m∑
j=1

I{nΓn
j = 1} − n, (7)

where Γn
j = 1

n

∑n
i=1 I{Zi = j} is the empirical distribution.

The test is given by φK = I{Kn ≤ Eπn [Kn] − τn}. The

sequence of thresholds {τn} we consider has the limit

τ := lim
n→∞mτn/n

2. (8)

The choice of τ determines the trade-off between JF and JM .
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To simplify the exposition, we restrict ourselves to distri-

butions in the set

P([m])(η) := {ν ∈ P([m]) : maxjνj ≤ m−1η} (9)

where η is a large constant. Note that π ∈ P([m])(η). We

show in the full version of the paper that distributions in this

set (with appropriate choice of η) achieves the worst-case

probability of missed detection.

We begin with the expectation and variance of Kn:

Eν [Kn]= −n2

m (m
∑m

j=1 ν
2
j ) +O( n3

m2 ),

Var ν [Kn]= 2n2

m (m
∑m

j=1 ν
2
j )(1 + o(1)).

Chebyshev’s bound is used in [2] to establish asymptotic con-

sistency. In fact, applying this bound with τ = 1
2κ(ε) gives

PF (φ
K
n )≤ Varπ[Kn]

(Eπn [Kn]− τn)2
=O(

m

n2
), PM (φK

n )=O(
m

n2
).

However this bound is too loose for our purpose. A tighter

bound is obtained via Chernoff,

Pπ{Kn≤Eπ[Kn]−τn}≤exp{−θ(Eπ[Kn]−τn)+Λπ,Kn
(θ)},

where Λν,Kn
(θ) = log(Eν [exp{θKn}]) is the log-moment-

generating function. The probability of missed detection is

bounded similarly. The main job is then to obtain an approx-

imation to Λν,Kn , given in the following proposition:

Proposition 2.4. For ν ∈ P([m])(η), the n-sample logarith-
mic moment generating function for the statistic Kn has the
following asymptotic expansion

Λν,Kn
(θ)=

n2

m
(m

m∑
j=1

ν2j ){−θ+ 1
2[e

−2θ−1+2θ]}+O(
n3

m2
)+O(1).

This leads directly to the generalized error exponent for

the false-alarm. Finding the generalized error exponents for

the missed detection is more involved, because the alterna-

tive hypothesis is a composite one. The key step is to iden-

tify the sequence of “dominating” distributions μ ∈ Πm, un-

der which the associated probability of missed detection is

approximately the largest. In view of Proposition 2.4, such

distributions should minimize the quantity m
∑m

j=1 μ
2
j . The

following elementary result serves this purpose:

Lemma 2.5.

inf
μ∈Πm

m

m∑
j=1

μ2
j = (1 + κ(ε))(1 + o(1)).

The infimum is achieved approximately by the bi-uniform dis-
tribution μ∗ given below:

1. When ε ≥ 0.5,

μ∗
j =

{ 1
�m(1−ε)� , j ≤ 
m(1− ε)�,

0, j > 
m(1− ε)�.
2. When ε < 0.5,

μ∗
j =

{
1
m + ε

�m/2� , j ≤ 
m/2�,
1
m − ε

	m/2
 , j > 
m/2�.
Applying the Gärtner-Ellis Theorem to the sequence of

“dominating” distributions, we show that the Chernoff bound

is actually tight and obtain Theorem 2.1.

2.2. Converse
Let Km denote the collection of subsets of [m] that have car-

dinality 
m(1− ε)�. For each set U ∈ Km, define the distri-

bution μU as

μU,j =

{ 1
�m(1−ε)� , j ∈ U ;

0, j ∈ [m] \ U . (10)

The converse is proved by showing that the average likelihood

ratio is lower-bounded uniformly for any zn
1 ,

1

|Km|
∑

U∈Km

μn
U

πn
(zn

1 ) ≥ exp{− 1
2

n2

m

ε

1− ε
(1 + o(1))}.

Consequently, supμ∈Πm
Pμ{φn = 0}/Pπ{φn = 0} satisfies

a similar bound. A refinement of the above argument leads to

the tighter bound in Theorem 2.2.

3. PEARSON’S TEST IS NOT OPTIMAL

Pearson’s chi-square test is a classical test for this composite

hypothesis testing problem. The test statistic χ2
n is given by

χ2
n =

m∑
j=1

(nπj)
−1(nΓn

j − nπj)
2.

The test φP = I{χ2
n ≥ τn} is asymptotically consistent:

Lemma 3.1. There exists a sequence {τn} such that

lim
n→∞PF (φ

P
n) = 0, lim

n→∞PM (φP
n) = 0.

Moving beyond consistency, when ε = O(m− 1
2 ), and CLT

analysis is applied, Pearson’s chi-square test has been shown

to be asymptotically minimax [5]. In the asymptotic mini-

maxity, two tests are compared using the absolute difference
between probabilities of error; in generalized error exponents,

a finer comparison using the ratio between probabilities of er-

ror is considered, and Pearson’s chi-square test is not optimal:

Theorem 3.2. Assume in addition that m = o(n2/ log(n)2).
For any sequence of threshold {τn} satisfying

lim
n→∞PM (φP

n) = 0, (11)

the error exponent for probability of false alarm is zero, i.e.,

JF (φ
P,m) = 0.

Comparing to the coincidence-based test in which each in-

dividual summand in the definition of Kn is no larger than 1,

the summand in χ2
n scales as (nΓn

j )
2. It becomes very large

when nΓn
j is large for some j, leading to a false alarm. Con-

sidering the following event,

An := {(z1, . . . , zn) : nΓn(1) = 
3n/√m�}, (12)

we claim that this event is likely to cause a false alarm:

Pπ{φP
n(Z

n
1 ) = 1|An} = 1− o(1).

On the other hand, the probability of An decays slowly:

Pπ(An) = exp{−1.5(n/
√
m) log(m)(1 + o(1))}. (13)

Combining these two equality gives a lower-bound

PF (φ
P
n) ≥ Pπ(An)Pπ{φP

n(Z
n
1 ) = 1|An}

which decays as (n/
√
m) log(m), slower than n2/m, and

thus JF (φ
P) = 0.
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4. NON-UNIFORM NULL HYPOTHESIS

The coincidence-based test (7) only works for uniform π. For

a non-uniform π that satisfies

Assumption 4.1. π ∈ P([m])(η),

we propose the following test statistic:

Tn=

m∑
j=1

1
2n

2π2
j I{nΓn

j = 0}−nπjI{nΓn
j = 1}+I{nΓn

j = 2}.

The new test is given by φT
n = I{Tn ≥ τn}. The expectation

of Tn is:

Eν [Tn] =
1
2

n2

m
(m

m∑
j=1

(νj − πj)
2)(1 + o(1)).

The proposed test has nonzero error exponents:

Theorem 4.2. Suppose Assumption 4.1 holds. For τ ∈
(0, 2ε2) with τ defined in (8), the following lower-bounds on
the error exponents hold:

JF (φ
T,m) ≥ JF > 0, JM (φT,m) ≥ JM > 0.

where JF and JM do not depend on m.

5. NUMERICAL EXPERIMENTS

The empirical performance of the coincidence-based test φK

is shown in Fig. 1. The slope from the theoretical predic-

tion almost matches the actual value. The difference between

theoretical prediction and actual value is due to higher-order

terms (O(n3/m2)) in Proposition 2.4, which are not negligi-

ble for the range of n and m plotted.
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Fig. 1. Performance of φK with ε = 0.45.
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Fig. 2. Error probabilities for Pearson’s chi-square test and

coincidence-based test: Averaged over 1.5× 108 runs; ε = 0.85.

The coincidence-based test and Pearson’s test are com-

pared in Fig. 2. The difference in performance is visible but

not very significant. While Pearson’s test has zero error expo-

nent, its error decay given by
√

n2/m log(m) in (13), is not

much smaller than n2/m for the range of n and m plotted.

The difference of performance would be more significant

when simulating with much larger n and m.
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Fig. 3. Bounds on optimal Je = min{JF , JM} for different ε:

Upper-bound from Theorem 2.2; Lower-bound from Theorem 2.1

via φK.

6. CONCLUSION

We have shown that the classical error exponent for the com-

posite hypothesis testing problem can be generalized to the

small sample case, and this criterion offers insights that are

not available in asymptotic consistency analysis, or central-

limit-theorem analysis. Future research directions include:
(i) We conjecture that the converse also holds for a non-

uniform π. The grouping idea in [6] could be helpful.

(ii) Fig. 3 shows a plot of the upper-bound and lower-

bound on the optimal generalized error exponent for

the probability of error Je = min{JF , JM}. There

clearly is room for improvement of the bounds.

(iii) The generalized error exponent concept could be ap-

plied to small-sample classification problems.

(iv) In practice, the data might be real-valued. An impor-

tant and classical problem is how to quantize the real

line. The error exponent concept could be useful since

it offers a clear view on how quantization affects the

test performance via m and ε.
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