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ABSTRACT

We consider the problem of detecting a sparse random signal from
the compressive measurements without reconstructing the signal.
Using a subspace model for the sparse signal where the signal pa-
rameters are drawn according to Gaussian law, we obtain the detec-
tor based on Neyman-Pearson criterion and analytically determine
its operating characteristics when the signal covariance is known.
These results are extended to situations where the covariance cannot
be estimated. The results can be used to determine the number of
measurements needed for a particular detector performance and also
illustrate the presence of an optimal support for a given number of
measurements.

Index Terms— Compressive sensing, signal detection, sparse
Gaussian vector, binary hypothesis, receiver operating characteristic

1. INTRODUCTION

The topic of under-sampling, where the objective is to achieve a
lower sampling rate than the Shannon/Nyquist sampling rate, con-
tinues to attract significant attention. In recent times, compressive
sampling (CS) has turned out to be the under-sampling mechanism
that provides a systematic approach to acquire signal samples when
the signal under acquisition is sparse in an appropriate domain [1],
[2], [3]. The emerging theory of CS uses a system model compris-
ing of an under-determined set of linear equations. In this standard
CS setup, a higher dimensional sparse signal vector is sampled by a
linear sampling matrix to a lower dimensional measurement vector
(under-sampled measurement vector). The task, in general, is to re-
construct the higher dimensional sparse signal vector from the lower
dimensional measurement vector. Following the rich literature, [4],
[5], [6], [7], we note a significant effort towards development of re-
construction algorithms and their performance analysis.

In addition to signal reconstruction, it is important to draw in-
ference from the measured data. Inference tasks include detection
and classification of signals and also estimation of a signal parame-
ters. Therefore, in the CS framework, it is interesting to investigate
inference problems using lower dimensional CS measurement vec-
tor. A rational question is how to find a trade-off between level of
under-sampling and inference performances. In this regard, an ap-
proach was proposed in [8] where the inferences (including detec-
tion) are performed directly using the CS measurement vector and
without any reconstruction. An application of such a compressive
detector for target detection in wireless sensor networks is consid-
ered in [9]. Employing a linear subspace model for sparse signals,
a measurement matrix exploiting the model to reduce the number of
measurements for a given performance is devised in [10]. Different
detection algorithms, depending on the information available about
the subspace and the sparse signal, have also been provided in [10].
On the other hand, an approach of using reconstruction algorithms

along-with detection methods has been developed in [11], [12]. In all
these works, the sparse signal is considered to be deterministic, and
possibly, unknown. However, in many applications the underlying
signal is inherently random. A typical example is spectrum sensing
in cognitive OFDM (Orthogonal Frequency Division Multiplexing)
systems where the task is to detect primary user transmissions that
are inherently random in content. The literature on detection of ran-
dom signals under the CS framework is limited, for e.g., detection
of stochastic process using optimized projections and classification
techniques is considered in [13]. Further, the approach of [13] is
different to the standard rule based one. These motivate a study of
detecting random signals using the CS framework based on the tra-
ditional rule based approach.

In our work, similar to [10], the sparse signal is described using
a linear subspace model and its detection is performed based on the
compressive measurements. In addition, we model the sparse signal
to be random with values drawn according to a Gaussian distribu-
tion. For such a model, we obtain optimal detection rules, sufficient
statistics and the receiver operating characteristics (ROC) when the
signal covariance is known at the receiver 1. This analysis allows
us to study the effect of compressive measurements on the detection
performance and determine the number of measurements guarantee-
ing a certain performance. To cater to the situation when estimation
of signal covariance is not feasible, we obtain a sub-optimal detec-
tor and numerically study its performance. Further, we illustrate the
presence of an optimal support when using the CS detector for a
given number of measurements. This needs to be contrasted with tra-
ditional CS reconstruction algorithms whose performance degrades
with an increase in the support of the sparse signal for a given num-
ber of measurements.

Notations: Uppercase boldface letters (A) denote matrices, low-
ercase underlined letters (x) represent vectors with x(k) is the kth
element of a x. Transpose operation is denoted by (·)T , IN is the
N × N identity matrix, ‖ · ‖ denotes the l2 norm [14] and λi(A)
is the ith eigenvalue of A. For positive semi-definite matrices, these
eigenvalues are arranged in the descending order. x ∼ N (μ,C)
denotes a real Gaussian vector x with mean μ and covariance C.

2. DETECTOR WITH COMPRESSIVE MEASUREMENTS

2.1. Linear Subspace Model

We consider a detection problem with the aim of distinguishing the
two hypotheses, H0 and H1 based on compressive measurements.
In particular, these hypotheses are characterized as,

H0 : y = Φη,

H1 : y = Φ
(
Tx+ η

)
, (1)

1A Basis Pursuit De-noising algorithm, for example, can be used to esti-
mate this information using training [10] for deterministic signals
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where x is a K × 1 real random vector, T is a N × K column or-
thonormal basis matrix (i. e, TT

T = IK ), Φ is a M ×N compres-
sive measurement matrix, y is the M × 1 measurement vector and η
is the N ×1 receiver noise. We consider K << N,M < N and as-
sume a Gaussian model for signal and noise : x ∼ N (0, σ2

xIK), η ∼
N (0, IN ). Further, η, x are considered independent. In this model,
the sparse signal s = Tx lies in a K-dimensional subspace, X , of
R

N characterized by T. While this model is similar to [10], it char-
acterizes x as random unlike the deterministic formulation of [10].

Let PΦ = Φ
T
(
ΦΦ

T
)−1

Φ, be the projection matrix associ-

ated with Φ. It is assumed that
√

N
M
PΦ, provides a δ− stable em-

bedding of {X , 0} [8]. Alternatively, with a probability of at least

1− 2e−cMδ2 (for some positive c), PΦ satisfies,

(1− δ)
M

N
‖s‖2 ≤ ‖PΦs‖2 ≤ (1 + δ)

M

N
‖s‖2, (2)

for all s ∈ X . Motivated by the discussion following equation (19),
[8], and ease of analysis, we choose Φ to contain orthonormal rows
spanning a random subspace (i. e, ΦΦ

T = IM ). For such a matrix,
PΦ = Φ

T
Φ, and (2) holds with ‖PΦs‖2 replaced by ‖Φs‖2 [8].

2.2. Compressive Detector

Using the Neyman-Pearson criterion, the signal is detected if,

p(y;H1)

p(y;H0)
≥ γNP , (3)

where p(y;Hk) is the probability density function (pdf) under Hk

and γNP is chosen based on the receiver operating point. For the
linear subspace model of Section 2.1, we have,

p(y;H1) = N (0,Cn +Cs) ,

p(y;H0) = N (0,Cn) , (4)

where Cs and Cn are the covariance matrices of ΦTx and η re-
spectively. Exploiting the statistics of x, η and row orthonormality

of Φ, it follows that, Cs = σ2
xΦTT

T
Φ

T and Cn = IM .
Let Cs = VsΛsV

T
s denote the eigen-value decomposition of

Cs and z = V
T
s y. Since rank(Cs) ≤ K, Λs contains utmost

K non-zero diagonal elements. Using these, it can be shown after
simple algebra that (3) reduces to the following detection rule,

T (z) ≥ γ′. (5)

Here T (z) = zTΛs (IM +Λs)
−1 z and γ′ = (2 ln γNP +

lndet (IM +Cs)). Thus, T (z) is the sufficient statistic for the de-
tection problem and PFA = Prob{T (z) ≥ γ′;H0} denotes the
probability of false alarm, while PD = Prob{T (z) ≥ γ′;H1} de-
notes detection probability. Evaluating PD and PFA requires the pdf
of T (z). Towards this, exploiting unitary Vs, we can show,

p(z;Hk) = N (0, IM + kΛs) , k = 0, 1. (6)

Recalling that λi(Cs) is nothing but the ith diagonal entry of

Λs, we have T (z) =
∑K

i=1

(
[z(i)]2λi(Cs)
1+λi(Cs)

)
. Thus, T (z) involves

weighted sum of independent χ2(1) variables and its pdf can be ob-
tained using the standard results in literature [15]. This leads to,
PFA and PD being evaluated as,

PFA =
1

2π

∫
∞

γ′

∫
−∞

−∞

⎛
⎝ K∏

i=1

1√
1− 2jλi(Cs)ω

1+λi(Cs)

⎞
⎠ e−jωr dω dr, (7)

PD =
1

2π

∫
∞

γ′

∫
−∞

−∞

(
K∏
i=1

1√
1− 2jλi(Cs)ω

)
e−jωr dω dr. (8)

In the following, we further analyze the detector ROC by simplifying
the expressions for PFA and PD.

3. PERFORMANCE ANALYSIS

3.1. Complete Measurements

When all the N measurements are available, i.e., M = N , we have,
Φ

T
Φ = ΦΦ

T = IN . This results in a column orthogonal ΦT.
As a result, using standard matrix identities, it can be shown that
λi(Cs) = σ2

x, i ∈ [1, K] and λi(Cs) = 0, i > K [14]. Using this
in (7) and (8), and from the well known results on cdf of chi-squared
variables [16], we have,

PFA =
Γ(K

2
,
(1+σ2

x
)γ′

2σ2
x

)

Γ(K
2
)

, PD =
Γ(K

2
, γ′

2σ2
x

)

Γ(K
2
)

, (9)

where, Γ(s, x) is the upper incomplete Gamma function and Γ(s)
is the standard Gamma function [16]. When K to be even, we fur-

ther have, Γ(K
2
, θ) = Γ(K/2)e−θ

∑K

2
−1

n=0
θn

n!
(Chapter 6 of [16]).

Assuming K to be even, PFA and PD of (9) reduce to

PFA = e−θ

K

2
−1∑

n=0

θn

n!
, θ =

(1 + σ2
x)γ

′

2σ2
x

(10)

PD = e−θ

K

2
−1∑

n=0

θn

n!
, θ =

γ′

2σ2
x

, (11)

where γ′ is used to choose an operating point on the ROC. Signal
covariance information is needed to obtain the K useful components
of z(i) needed in the evaluation of T (z).

Since PD, PFA decrease with increasing γ′, it is follows that

e−θ
∑K

2
−1

n=0
θn

n!
reduces with increase in θ > 0. This would be used

to derive bounds in the next section.

3.2. Compressive Measurements

We now analyze the detector ROC when M < N by deriving bounds
and approximations on PFA and PD .

3.2.1. Bounds on PD

Recalling T (z) =
∑K

i=1

(
[z(i)]2λi(Cs)
1+λi(Cs)

)
, it immediately fol-

lows that, TD,l(z) ≤ T (z) ≤ TD,u(z), where TD,u(z) =

λmax

∑K

i=1
[z(i)]2

1+λi(Cs)
and TD,l(z) = λmin

∑K

i=1
[z(i)]2

1+λi(Cs)
(here,

λmax = maxi λi(Cs), λmin = mini∈[1,K] λi(Cs)). This leads to
Prob{TD,l(z) > γ′;H1} ≤ PD ≤ Prob{TD,u(z) > γ′;H1}.
Using ideas similar to the Section 3.1 and letting θl =

γ′

2λmin

, θu =
γ′

2λmax
, these probabilities can be evaluated to yield,

e−θl

K

2
−1∑

n=0

θnl
n!

≤ PD ≤ e−θu

K

2
−1∑

n=0

θnu
n!

. (12)

It now remains to estimate λmax, λmin. Towards this, we exploit (2)
and the fact that PΦ = ΦΦ

T . Since (2) holds for all s = Tx, and
that ‖Tx‖ = ‖x‖ as T is column orthonormal, we have,

(1− δ)M
N
‖x‖2 ≤ xT

T
T
Φ

T
ΦTx ≤ (1 + δ)M

N
‖x‖2, (13)

(1− δ)M
N

≤ λi(T
T
Φ

T
ΦT) ≤ (1 + δ)M

N
, 1 ≤ i ≤ K. (14)
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Equation (14) follows from the Courant-Fischer theorem [14]. Not-
ing that the non-zero eigenvalues AB and BA are identical, we
have, λi(Cs) = σ2

xλi(T
T
Φ

T
ΦT), i ∈ [1, K] and hence λmax <

M
N
σ2
x(1 + δ) and λmin > σ2

x(1− δ)M
N

. Noting that e−θ
∑p

n=0
θn

n!
is inversely proportional to θ, bounds on PD are obtained by using
the aforementioned inequalities on λmax, λmin. In particular, us-
ing θl =

Nγ′

2Mσ2
x
(1−δ)

, θu = Nγ′

2Mσ2
x
(1+δ)

in (12) yields the necessary
bounds on PD . When δ ≈ 0, PD has the following approximation,

PD ≈ e−θ

K

2
−1∑

n=0

θn

n!
, θ =

Nγ′

2Mσ2
x

. (15)

3.2.2. Bounds on PFA

Letting TFA,u(z) =
λmax

1+λmax

∑K

i=1[z(i)]
2 and TFA,l(z) =

λmin

1+λmin∑K

i=1[z(i)]
2, it can be shown that TFA,l(z) ≤ T (z) ≤ TFA,u(z).

Following the methodology pursued in Section 3.2.1, we can

obtain bounds similar to (12) with θl =
γ′(1+σ2

x
(1−δ)M

N
)

2σ2
x
(1−δ)M

N

and

θu =
γ′(1+σ2

x
(1+δ)M

N
)

2σ2
x
(1+δ)M

N

. Further, when δ ≈ 0,

PFA ≈ e−θ

K

2
−1∑

n=0

θn

n!
, θ =

N(1 + σ2
x)γ

′

2Mσ2
x

. (16)

3.2.3. Observations

Remark 1 Tightness of bounds: When M = N , it can be shown
that the upper and lower bounds on PD in (12) are identical (a sim-
ilar result holds for PFA) and the approximations in (15), (16) be-
come equalities. For other M , tightness of the bounds depend on the
spread of λi(T

T
Φ

T
ΦT), which, in turn, is governed by the choice

of Φ. Better results are obtained by designing Φ for a smaller δ.

Remark 2 Performance Dependence on M : Equations (15) and
(11) indicate that the detection performance deteriorates with de-
crease in M when other parameters are fixed (recall that e−θ·∑p

n=0
θn

n!
is inversely proportional to θ). In particular, the compres-

sive detector needs an additional signal power of about 10 log N
M

dB
to achieve a performance similar to traditional detectors. A sim-
ilar inference can be obtained from [8]. On the other hand, from
a design perspective, the approximations provide a framework for
numerically obtaining M required for a certain performance.

Remark 3 Performance Dependence on K: When K increases for
a fixed M and N , the sparsity level decreases, and CS theory indi-
cates poor reconstruction performance. However, when detecting a
signal with K independent components, increasing K provides ad-
ditional degrees of freedom (diversity), thereby hinting at improved
performance. This predicts a set of values of K that optimize the per-
formance for a given M,N . Simulations corroborate this behavior
and obtaining optimal K analytically is left for future work.

Remark 4 Knowledge of T at the detector: When the signal sub-
space T is known, the use of Φ = GT

T is suggested in [10], where
G is aM×K compressive sensing matrix withM < K. This choice
allows for a much lower M for a given performance compared to the
original scheme. For appropriate orthonormal G satisfying the re-
quired isometry properties, expressions derived earlier continue to
hold with K replacing N .

3.2.4. Detection without information about Signal Covariance

In the earlier development, signal covariance was implicitly assumed
at the detector when evaluating T (z). Alternatively, having access
to T and σ2

x also suffices. This information can be obtained from
measurements in a straightforward manner. To address the scenario
when such an estimation is not possible, either due to limited data
record or complexity constraints, we develop a sub-optimal detector
where the computation of the test statistic does not require informa-
tion about Cs.

Let S(y) =
∑M

i=1[y(i)]
2 and the detector decides H1 if S(y) >

β. Since Vs is unitary,
∑M

i=1[y(i)]
2 =

∑M

i=1[z(i)]
2. Using this, it

can be shown that S(y) ≥ T (z), thereby indicating a poorer PD for
the sub-optimal detector. We now provide expressions for PFA, PD ,
and the steps are omitted for lack of space. In particular, when M is
even, it can be shown that,

PFA = e−θ
∑M

2
−1

n=0
θn

n!
, θ = γ′

2σ2
x

, (17)

PD = 1
2π

∫
∞

γ′

∫
−∞

−∞

(∏M

i=1
1√

1−2j(1+λi(Cs))ω

)
e−jωr dω dr.(18)

While PFA has been evaluated in close-form, PD requires numeri-
cal evaluation. While formulating the test-statistic does not warrant
the knowledge of Cs, determining the thresholds require informa-
tion about signal statistics. For simplicity, it is assumed that the
threshold is provided to the receiver by a central entity periodically.
Simplifying the error expressions of this detector further as well as
exploring other sub-optimal detectors is left for future work.

4. SIMULATIONS

In this section, we simulate the performance of detectors based on
compressive measurements. In the figure (1), performance of the
following are numerically depicted : (i) detector based on (5) with
a M × N row orthonormal Φ (termed as Full CSD), (ii) detector
based on (5) with Φ = GT

T [10] (termed as Reduced CSD) and
(3) sub-optimal detector developed in Section 3.2.4. G and Φ (for
cases (1) and (3)) are obtained as orthonormal rows spanning the
subspace generated by a matrix consisting of i.i.d N (0, 1) variables
(of appropriate dimensions). Further, SNR = σ2

x = 10 2,K =
10, N = 500,M = 200 for Full CSD (M

N
= 0.4), M = 4 for

Reduced CSD (M
K

= 0.4) and M = 300 for the suboptimal detector.
The hypotheses are equally likely and the results are averaged over
500 realizations of Φ and 1000 realizations of x per realization of Φ.
Analytical results obtained from (15) and (16) for Full CSD case are
also presented. Clearly, for the chosen parameters, Full and Reduced
CS exhibit high PD for a low PFA. Figure (1) also illustrates that
the analytical expressions and numerical evaluations show a high
degree of similarity, thereby allowing the use of derived expressions
for benchmarking. Further, the advantages of exploiting the signal
covariance (reduced CSD) in terms of number of measurements and
performance vis-a-vis the blind detector are also shown.

Figure (2) evaluates the PD and PFA expressions in (15), (16)
for N = 500, M = 200 and various K. The total signal power
is held constant, with SNR = σ2

x = 100
K

. Performance initially
improves as K is increased from 4 to 12; it then remains mostly un-
changed for K ∈ [12, 20] and subsequently reduces, as indicated in
Remark (3). In general, the optimal value(s) of K depends on fac-
tors including SNR, M,N and its derivation would be considered in
future. We do not report the performance variations with M , partly

2measured per component
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Fig. 1. Performance of various detectors
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Fig. 2. Effect of K on the ROC based on approximations for
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due to the space constraints and also due to the availability of derived
expressions that provide a close match to the actual performance.

5. CONCLUSIONS

A binary hypothesis problem of detecting a random signal in noise
with compressive measurements is formulated. Focussing on the
known signal covariance case, approximations for Receiver Oper-
ating Characteristics are derived. These approximations are shown,
numerically, to emulate the actual performance, thereby providing
insights into the effects of various parameters − number of mea-
surements, sparse signal support, SNR − on performance. A sub-
optimal detector blind to signal covariance is also devised followed
by an evaluation of its performance. Apart from an understanding
of the detector characteristics, the work indicates an optimal sparse
signal support for a given number of measurements.
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