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ABSTRACT
The generalized coherence (GC) estimate is a well studied statis-
tic for detection of a common but unknown signal on several noisy
channels. In this paper, it is shown that the GC detector arises nat-
urally from a Bayesian perspective. Specifically, it is derived as a
test of the hypothesis that the signals in the channels are indepen-
dent Gaussian processes against the hypothesis that the processes
have some arbitrary correlation. This is achieved by introducing
suitable non-informative priors for the covariance matrices across
the channels under the two hypotheses. Subsequently, reduced like-
lihoods are obtained by marginalizing the joint distribution of the
data and the covariance matrix in each case. The likelihood ratio is
then shown to be a monotonic function of the GC detection statistic.
This derivation extends to the case of time-correlated signals, allow-
ing comparison with the generalized likelihood ratio test (GLRT)
recently proposed by Ramı́rez et al.

Index Terms— Bayesian methods, generalized coherence esti-
mate, multi-channel signal processing, non-informative priors.

1. INTRODUCTION

The problem of detecting a common but unknown signal on two or
more noisy channels has a rich history and has recently received re-
newed interest [1]. Pioneering work in the context of sonar signal
processing led to widespread use of the magnitude-squared coher-
ence (MSC) estimate as a detection statistic in the two-channel set-
ting [2]. The properties of the MSC estimate and the performance
of detectors based upon it were studied extensively in the 1970s and
1980s [3, 4]. Extending the MSC concept to multiple-channel sce-
narios received considerable attention in the 1980s, leading to study
of estimators of multiple coherence [5] and, somewhat later, gener-
alized coherence (GC) as multi-channel detection statistics. The GC
estimate was introduced in [6] in the context of multiple-channel
detection, and the performance of the GC estimator as a detection
statistic was documented in several works throughout the 1990s and
into the early 2000s. Its symmetries and invariance properties were
well studied during this period [7, 8], and the extent to which the GC
estimate is canonical with respect to a desirable set of invariances
and symmetries was examined in [9].

In this paper we take a fresh look at the GC detector from a
Bayesian perspective. Specifically, we show that, from this point
of view, it arises naturally as the statistic for a test of the null hy-
pothesis that the signals in the channels are independent Gaussian
processes against the alternative hypothesis that the processes are
Gaussian with some arbitrary correlation. This is achieved by in-
troducing suitable non-informative priors for the covariance matri-
ces across the channels under the two hypotheses. Care must be

taken in choosing the priors, as the two hypotheses correspond to
parameter spaces of different dimensionality and one must choose
consistent priors to avoid inadvertently favoring one of the hypothe-
ses a priori. After choosing consistent “non-informative” priors, the
marginalized likelihoods are obtained by marginalizing the joint dis-
tribution of the data and the covariance matrix in each case. The
likelihood ratio is then shown to be a monotonic function of the GC
detection statistic. This perspective directly connects the GC statis-
tic to the Bayesian (as opposed to the Neyman-Pearson) detector for
a precisely defined multi-channel problem.

The classical GC detector assumes that the time series in each
channel are temporally white. In recent work, Ramı́rez et al. [1]
have extended the GC detector to account for unknown temporal
correlations in the multi-channel data. They assume that the data
consists of L independent time blocks and derive a GLRT detector
to test for spatial correlation among the channels in the presence of
unknown temporal correlation. We show that this GLRT statistic
also arises as a Bayesian marginalized likelihood ratio test.

Notation: In this paper we use bold lowercase symbols to represent
complex vectors and bold uppercase symbols for complex matrices.
† denotes Hermitian transpose, |·| determinant, and tr the trace op-
erator. In is the n×n identity matrix and 0n the n×n zero matrix.
‖x‖2 is the squared (Euclidean) norm of x, and x ∼ CN (μ,R)
means that x is a complex Gaussian random vector with mean μ and
covariance R.

2. PROBLEM FORMULATION

Consider M complex random processes representing the out-
puts of M spatially distributed sensors. For m = 1, . . . ,M , let
x†

m = (xm,1, . . . , xm,N ) be a vector of N complex measurements
obtained from sensor m and X† = (x1, . . . ,xM ). The generalized
coherence (GC) estimate [6, 9] is defined as

γ2 = 1 − |XX†|
‖x1‖2 . . . ‖xM‖2

(1)

where XX† is the M ×M Gram matrix of x1, . . . ,xM .

The goal here is to derive the GC detector from the Bayesian
perspective. The detector’s value in determining whether a com-
mon signal is present on two or more noisy channels is predicated
on distinguishing between hypotheses H0, in which the vector
x1, . . . ,xM contains independent samples of independent zero-
mean Gaussian processes with unknown covariance, and its com-
plement H1 in which these vectors contain unknown and correlated
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signals. Symbolically,

H1 : X ∼ CN (0,R1), for some covariance R1

H0 : X ∼ CN (0,R0), for some diagonal covariance R0.

Let x(n) = (x1,n, x2,n, . . . , xM,n)† be a vector of samples at time
n from M sensors. The likelihood function of H0 is

p(X |H0,R
−1
0 ) =

NY
n=1

p(x(n)|H0,R0)

= π−MN |R−1
0 |Ne−tr{R−1

0 W }

(2)

where W =
PN

n=1 x(n)x(n)† = XX†. Similarly, the likelihood
function of H1 is

p(X |H1,R
−1
1 ) = π−MN |R−1

1 |Ne−tr{R−1
1 W }. (3)

The parameters R0 and R1 are nuisance parameters in the like-
lihood which we want to eliminate. Since the likelihood is expressed
in terms of R−1

0 and R−1
1 , we regard these to be our nuisance param-

eters instead. The Bayesian treatment of such nuisance parameters
is to marginalize the posterior distribution with respect to them. In
this instance, we consider the integrated likelihoods

p(X |H0) =

Z
p(X |H0,R

−1
0 )p(R−1

0 )dR−1
0 (4)

p(X |H1) =

Z
p(X |H1,R

−1
1 )p(R−1

1 )dR−1
1 . (5)

Here

dR−1
0 =

MY
i=1

drii
(6)

dR−1
1 =

MY
i=1

drii
Y
i<j

d�(rij)d�(rij) (7)

where rij denotes the (i, j)th element of R−1 and � and � denote
real and imaginary parts, respectively.

Through this procedure we have replaced the data models con-
taining the unknown parameters R−1

0 and R−1
1 , with the models

p(X |H0) and p(X |H1) so that the detection problem compares

H1 : X ∼ p( · |H1) (8)

H0 : X ∼ p( · |H0). (9)

We proceed to show that the GC detection statistic is a monotonic

function of the likelihood ratio,
p(X |H1)
p(X |H0)

.

3. PRIOR PROBABILITY DISTRIBUTION

In order to carry out the integrations in (4) and (5), we need prior
distributions on R−1

0 and R−1
1 . We would like these priors to be as

non-informative as possible, while still leading to proper densities
p(X |H1) and p(X |H0).

3.1. Jeffreys Priors

Consider the parameter manifold M1 of the positive definite matrix
R1. Since every positive definite matrix has a unique inverse we can
equally well parametrize this manifold in terms of inverse covariance
matrices R−1

1 . The manifold M1 is endowed with a Riemannian
metric by the Fisher information associated with estimation of R−1

1

from data, based on the model H1. That is,

F = EX

˘
d log p(X |R−1

1 ) ⊗ d log p(X |R−1
1 )
¯

(10)

where d denotes the exterior derivative on M1 [10]. The Jeffreys
prior on M1 is the volume form associated with the Fisher metric,

vol =
p

|F |dR−1
1 . (11)

This is commonly used as a canonical non-informative prior, as it is
invariant with respect to re-parametrization [11, 12]. For the com-
plex data model, the Jeffreys prior for R−1

1 is given by

pJ(R−1
1 ) dR−1

1 = |R−1
1 |−MdR−1

1 . (12)

As a probability distribution, this is improper. Often this is not a
problem as long as the posterior distribution can be normalized. In
our case, the marginalized data model distribution is

p(X |H1) ∝ 1

πMN

Z
det(R−1

1 )N−Me−tr{R−1
1 XX†}dR−1

1

∝ πM(M−1)/2

πMN

MY
i=1

Γ(N−M+i)|XX†|−N
(13)

which is still improper. Similarly, the Jeffreys prior for R−1
0 is

pJ(R−1
0 )dR−1

0 = |R−1
0 |−1dR−1

0 (14)

and the marginalized data model distribution is

p(X |H0) ∝ 1

πMN
ΓM (N)

 
MY

i=1

‖xi‖2

!−N

. (15)

Again this is improper, so we need to be more careful in specifying
a prior distribution. As choosing appropriate priors is crucial to the
Bayesian approach, we proceed with a more judicious choice of prior
distributions while retaining the Jeffreys priors as the basis of the
choice.

3.2. Maximum Entropy Priors

In the previous section, we found that the use of the improper Jef-
freys priors led to improper marginalized data model distributions.
This suggests the need for more informative prior distributions. Our
approach is to introduce enough prior information to give proper
marginalized data model densities p(X |H1) and p(X |H0) and then
relax this as much as possible in the final result in a manner we now
describe.

The maximum entropy distribution, subject to certain con-
straints, represents the least informative distribution [13] satisfy-
ing those constraints. Our approach is to construct proper non-
informative prior distributions by constructing maximum entropy
distributions relative to the Jeffreys prior under each of the two
hypotheses, subject to the conditions

E(tr(R−1)) = α1 (16)

E(log(|R|)) = α2. (17)
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First consider the case that R1 ∈ M1. The maximum entropy dis-
tribution of R−1

1 relative to the Jeffreys prior, subject to (16) and
(17) is given by

p(R−1
1 ) = Z1(τ, q)

−1|R−1
1 |−Me−τtr(R−1

1 )−q log(|R1|)

= Z1(τ, q)
−1|R−1

1 |q−Me−tr(τR−1
1 )

(18)

where τ and q are chosen to satisfy the conditions (16) and (17) and
Z1(τ, q) is the normalization constant or partition function,

Z1(τ, q) =

Z
M1

det(R−1
1 )q−Me−tr(τR−1

1 )dR−1
1

= πM(M−1)/2τ−Mq
MY

i=1

Γ(q −M + i).

(19)

The prior (18) is proper for τ > 0 and q > M − 1. Notice that,
in the limit τ, q → 0, the prior (18) becomes less informative and
approaches the Jeffreys prior up to normalization.

The moments (16) and (17) can be computed using the partition
function Z1(τ, q). Specifically,

E(tr(R−1
1 )) = − ∂

∂τ
logZ1(τ, q) = Mqτ−1

(20)

and

E(log|R1|) = − ∂

∂q
logZ1(τ, q) = M log τ−

MX
i=1

ψ(q−M+i)

(21)
where ψ is the digamma function.

Now consider the prior under H0. In this case R0 ∈ M0, and
the maximum entropy distribution relative to Jeffreys prior subject
to the constraints (16) and (17) is

p(R−1
0 ) = Z0(τ, q)

−1|R−1
0 |q−1e−tr(τR−1

0 ). (22)

In this case the partition function is

Z0(τ, q) =

Z
M0

|R−1
0 |q−1e−tr(τR−1

0 )dR−1
0 = τ−MqΓM (q) (23)

implying that the prior (22) is proper for τ > 0 and q > 0. We have
the moments

E(tr(R−1
0 )) = − ∂

∂τ
logZ0(τ, q) = Mqτ−1

(24)

and

E(log|R0|) = − ∂

∂q
logZ0(τ, q) = M log τ −Mψ(q). (25)

We first note that (24) and (20) are consistent. Secondly, as τ → 0
we have,

E(log|R1|) − E(log|R0|)
E(log|R0|) ∼ Mψ(q) −PM

i=1 ψ(q −M + i)

M log τ

=

PM−1
i=1

i
q−M+i

M log τ
, (26)

where the last equality uses the identity ψ(x + 1) = ψ(x) + 1/x.
For q = M this becomes

E(log|R1|) − E(log|R0|)
E(log|R0|) ∼ M − 1

M log τ
. (27)

Thus, the prior probability distributions for both hypotheses are con-
sistent with respect to the constraints (16) and (17) in the limit τ→0.

4. GENERALIZED COHERENCE ESTIMATE AS A
LIKELIHOOD RATIO

In this section we show that the GC detection statistic is obtained
from the reduced likelihood ratio of the two hypotheses. We first
calculate the posterior distributions for the priors on R−1

0 and R−1
1 ,

discussed in the previous section. The reduced data models are ob-
tained by marginalizing the likelihoods with respect to these param-
eters. Substituting (2) and (22) into (4), we obtain the marginalized
likelihood for hypothesis H0,

p(X |H0)

=
τMqπ−MN

ΓM (q)

Z
M0

|R−1
0 |N+q−1e−tr(R−1

0 (W +τIM ))dR−1
0

=
τMqπ−MN

ΓM (q)

MY
i=1

Z ∞

0

σ
−2(N+q)−1
i e−σ−2

i (‖xi‖2+τ)dσi

=
τMqΓM (N+q)

πMNΓM (q)
QM

i=1(‖xi‖2 + τ)N+q
.

(28)

For hypothesis H1, substituting (3) and (18) into (5) yields

p(X |H1)

=
τMq

R
M1

|R−1
1 |N+q−Me−tr{R−1

1 (W +τIM )}dR−1
1

πMNπM(M−1)/2
QM

i=1 Γ(q−M+i)

=
τMqQM

i=1 Γ(N+q−M+i)

πMN
QM

i=1 Γ(q−M+i)|W + τIM |N+q
.

The likelihood ratio statistic for testing H1 against H0 is thus given
by

p(X |H1)

p(X |H0)
=
k(N + q,M)

k(q,M)

 QM
i=1(‖xi‖2+τ)

|W +τIM |

!N+q

(29)

where

k(x,M) =
MY

i=1

Γ(x−M + i)

Γ(x)
. (30)

As τ → 0, the likelihood ratio becomes

p(X |H1)

p(X |H0)
=
k(N + q,M)

k(q,M)

 QM
i=1‖xi‖2

|XX†|

!N+q

. (31)

The GC estimate γ2 given in (1) [6, 9] is related to this likelihood
ratio (31) by

p(X |H1)

p(X |H0)
=
k(N + q,M)

k(q,M)

1

(1 − γ2)N+q
(32)

and is hence a monotonic function of the likelihood ratio. In the case
M = 2, we have

p(X |H1)

p(X |H0)
=

q − 1

N + q − 1

„
1 − |〈x1,x2〉|2

‖x1‖2‖x2‖2

«−(N+q)

(33)

where |〈x1,x2〉|2 is the absolute square of the inner product of x1

and x2.
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5. DETECTION THRESHOLDS

The Neyman-Pearson detection thresholds for the generalized coher-
ence detector have been explored in detail in [9]. Here we consider
the Bayesian detection thresholds.

Let Cij for i, j = 0, 1 denote the loss function for our decision
problem; i.e., Cij is the loss incurred by deciding in favor of Hi

when Hj is true. We take C00 = C11 = 0. The expected losses
incurred in deciding in favor of each hypothesis are

ρ(H1) = C10p(H0|X) and ρ(H0) = C01p(H1|X). (34)

The Bayesian decision minimizes the expected loss; i.e., H1 is fa-
vored if

ρ(H1)

ρ(H0)
=
C10p(H0|X)

C01p(H1|X)
< 1, (35)

which may be rewritten as

p(X |H1)

p(X |H0)
>
C10p(H0)

C01p(H1)
≡ β. (36)

It follows from (31) and (32) that the Bayesian detection threshold
for GC is given by

γ2 > 1 −
„
k(N + q,M)

k(q,M)

1

β

« 1
N+q

. (37)

6. TIME-CORRELATED SIGNALS DETECTOR AS
LIKELIHOOD RATIO

In this section we show that the GLRT for the case of time-correlated
signals recently derived by Ramı́rez et al. [1] can be also obtained
as a marginalized likelihood ratio from a Bayesian perspective. In
this case, it is assumed that each of the L rows of the data matrix
X is an N -vector of time samples. X is written as a LN -vector
z = vec(XT). Consider the hypotheses

H1 : z ∼ CN (0,R1)

H0 : z ∼ CN (0,R0) (38)

where R1 is some unknown covariance matrix and R0 is some un-
known block-diagonal covariance matrix; i.e., Rij = 0N , i = j.
Under H0, the spatially uncorrelated vector-valued time series may
be temporally correlated [1]. As in Section 2, through the proce-
dure of marginalizing the unknown parameters R0 and R1, we can
compare the two hypotheses as shown in (8) and (9).

Let Z = (z(1) . . . z(L)), the joint likelihood function of H0

and H1 are

p(Z |H0,R0) = π−MNL|R−1
0 |Le−tr(R−1

0 Q)
(39)

p(Z |H1,R1) = π−MNL|R−1
1 |Le−tr(R−1

1 Q)
(40)

where Q =
PL

l=1z(l)z(l)† with Qij =
PL

l=1xi(l)xj(l)
† being

its block element. Using the prior p(R−1
0 ) as given in (22) and

marginalizing with respect to the nuisance parameters R−1
0 , we ob-

tain the reduced likelihood for hypothesis H0; i.e.,

p(Z |H0) =
π−MNLτMq

ΓM (q)

Z
|R−1

0 |L+q−1e−tr{R−1
0 (Q+τIMN )}dR−1

0

=
τMq

πMNLΓM (q)

MY
i=1

Z
|R−1

ii |L+q−1e−tr{R−1
ii (Qii+τIN )}dR−1

ii

=
τMqΓM (L+ q)

πMNLΓM (q)
QM

i=1|Qii + τIN |L+q
. (41)

Similarly, using the prior p(R−1
1 ) in (18) and marginalizing with

respect to R−1
1 , we obtain the marginalized likelihood for H1 as

p(Z |H1) =
τMqQM

i=1 Γ(L+q−M+i)

πMNL
QM

i=1(q−M+1)|Q+τIMN |(L+q)
. (42)

As τ → 0, the likelihood ratio becomes

p(Z |H1)

p(Z |H0)
→ k(L+ q,M)

k(q,M)
γL+q. (43)

This is a monotonic function of the statistic

γ =

QM
i=1|Qii|
|Q| , (44)

as is the GLRT detector given in [1]. Finally, the Bayesian detection
thresholds can also be set as described in Section 5; i.e.,

γ >

„
βk(q,M)

k(L+ q,M)

« 1
L+q

. (45)
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