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ABSTRACT

We consider the problem of transmit beamforming in multi-group
multicasting systems with covariance-based channel state informa-
tion (CSI) available at the transmitter where the total transmitted
power is minimized subject to quality-of-service (QoS) constraints
at the receivers. Previous approaches for this problem are based
on semidefinite relaxation (SDR) and require randomization and
costly power scaling which is avoided in our approach. The pro-
posed technique can be viewed as a non-trivial extension of the
iterative second-order cone programming (SOCP) approach of [5],
which is restricted to the case of instantaneous (rank-one) CSI, to
the beamforming problem with higher-rank channel covariance ma-
trices. Computer simulations reveal that the proposed technique
exhibits superior performance in terms of total transmitted power
at a reduced computational complexity as compared to the SDR
method.

Index Terms— Multi-group multicasting, downlink beamform-
ing, convex optimization, second-order cone programming, statisti-
cal channel state information

1. INTRODUCTION

In traditional cellular systems, multicasting has been considered as a
task performed by efficient routing protocols at the network layer to
enable, e.g., subscriber-based video streaming services. In emerging
wireless networks, however, the broadcasting property of the wire-
less medium can be exploited to shift this task to the physical layer.
The use of antenna arrays and CSI at the transmitter, which enables
multicast beamforming, is provisioned by many wireless commu-
nication standards, such as, e.g., the Multimedia Broadcast Mul-
ticast Service (MBMS) in LTE-A. With multi-antenna techniques,
more sophisticated transmission than in traditional broadcast radio
becomes possible: Rather than radiating energy isotropically or with
a fixed beam pattern, energy can be steered towards the subscribers
with adaptive beams. Superimposing multiple beam patterns allows
to multiplex different cochannel multicasting groups in space rather
than in time or frequency, increasing the spectral efficiency of the
system.

QoS based transmit beamformer designs which minimize the
total transmitted power while guaranteeing a minimum received
signal-to-interference-plus-noise ratio (SINR) for each user were
first proposed in [1], [2] and [3]. The multiuser downlink scenario,
whereG independent data streams are transmitted toGmobile users,
was treated in [1]. In [2], the broadcasting scenario, where the same
stream is transmitted to M mobile users, also referred to as single
group multicasting, was considered. Both beamforming scenarios
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mentioned above can be combined under the general multi-group
multicasting framework of [3]. In this framework, the proposed
QoS-based design yields a non-convex NP-hard optimization prob-
lem. Applying SDR, this problem can be approximated by a convex
semidefinite programming (SDP) problem that is solvable in polyno-
mial time [3]. However, the drawback of the relaxation approach is
that it is not guaranteed that the solution of the SDP problem is fea-
sible for the original problem. Therefore, randomization techniques
(see, e.g., [2] and references therein) and proper power scaling
are required to generate a feasible approximate solution from the
solution of the SDP problem [3]. In the multi-group multicasting
scenario, power scaling involves additional linear programming (LP)
problems that need to be solved for each randomization instance.

In [4] and [5], we have proposed an alternative convex approxi-
mation approach for the multi-group multicasting scenario. We have
approximated the original problem by a SOCP problem whose solu-
tion, provided it exists, is always feasible for the original problem.
Hence, we can avoid the use of randomization and costly power con-
trol. As the SOCP problem is only an approximation of the original
QoS beamformer design problem, we have proposed an iterative pro-
cedure in which the approximation is successively improved [5].

The two competing techniques, i.e., the SDR technique and
the iterative SOCP approximation technique, have different re-
quirements on the availability of CSI at the transmitter. The SDR
technique of [3] can be applied in both cases, with instantaneous
CSI available at the transmitter, as well as in the case where only
second-order statistics of the CSI in form of channel covariance
matrices are available. A major shortcoming of the iterative SOCP
technique of [4] and [5] is that, despite its computational benefits, it
is only applicable in the former case. However, instantaneous CSI
is usually difficult to acquire, except for specific cases in which,
e.g., channel reciprocity can be exploited in time division duplexing
(TDD) systems to estimate the instantaneous downlink channels
from the uplink [1]. In other scenarios, estimates of the instan-
taneous downlink channels need to be fed back from the users to
the base station causing a prohibitive signaling overhead especially
in fast fading scenarios. The second-order statistics of the down-
link channel, however, usually evolve at a significantly lower rate
than the corresponding instantaneous channel realizations. There-
fore, beamformer designs based on channel covariance matrices are
associated with a significantly reduced signaling overhead [1].

In this paper, we propose a non-trivial extension of our tech-
nique proposed in [5] to the case where statical CSI is available at
the transmitter. In our extension, the aforementioned advantages
over the SDR technique are preserved, i.e., the use of randomiza-
tion techniques and costly power control is avoided. As in [5], we
approximate the original problem by a convex SOCP problem and
successively improve the approximate solution. A trivial way to
keep the technique of [5] applicable would be to simply use only the
principal component of the channel covariance matrix to formulate
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the SOCP approximation. However, if the covariance matrix is of
higher rank, this approximation is poor and leads to unsatisfactory
beamforming results. Therefore, we propose an l1-norm approxi-
mation of the Euclidian norm which involves all eigenvectors in the
optimization procedure. Similar to [5], we prove that our algorithm
yields an improved solution in each iteration. Our simulation results
reveal that the proposed technique is an attractive alternative to the
state-of-the-art methods enjoying a significantly reduced computa-
tional complexity.

2. SIGNAL MODEL AND PROBLEM STATEMENT

Let us consider the wireless multicasting scenario of [3] where a
single base station equipped with an array of N antenna elements
transmits information symbols to M single-antenna mobile users.
Let the N × 1 vector of complex channel gains from each transmit
antenna element to the receive antenna of user m ∈ {1, . . . ,M} be
denoted as hm. Each user belongs to one out of 1 ≤ G ≤ M mul-
ticast groups, {G1, . . . ,GG}, where Gk contains the indices of the
users interested in the message of the kth multicasting stream, and
k ∈ K where K = {1, . . . , G}. We assume that each user can only
receive a single stream and thus, the multicasting groups are disjoint,
i.e., Gk ∩ Gl = ∅, for l �= k and ∪kGk = {1, . . . ,M}. The general
multi-group multicasting scenario contains the multiuser downlink
case of [1] with Gk = k, ∀k ∈ K, and the broadcasting case of [2]
with M = 1 as special cases.

Let wH
k ∈ C

N , where (·)H stands for the Hermitian transpose,
be the vector of weighting coefficients applied to theN transmitting
antenna elements to form a beam towards group k. The total power
radiated by the transmitting antenna array can then be expressed as∑G

k=1 ||wk||22. Assuming instantaneous CSI at the receiver might
not be valid in practice since feeding instantaneous CSI back to the
base station causes a large signaling overhead. Therefore, we assume
that at the transmitter, the CSI is only available in terms of the chan-
nel covariance matrices, i.e., Rm = E{hmh

H
m}, ∀m = 1, . . . ,M .

The receiver noise powers {σ2
m}Mm=1 are also assumed to be known

at the transmitter. With this information, we can design the multi-
cast beamformer such that the total transmitted power is minimized
while the SINR levels at the receivers are kept above prescribed QoS
thresholds:

min
{wk∈CN}G

k=1

G∑
k=1

||wk||22 (1)

subject to
w

H
k Rmwk∑

l �=k w
H
l Rmwl + σ2

m

≥ γm

∀m ∈ Gk, ∀k, l ∈ K
As shown in [3], the problem (1) is non-convex and NP-hard.

However, convex approximation techniques can be applied to find
approximate solutions in polynomial time.

In [3], problem (1) is approximated by a SDP problem using the
SDR technique. The relaxation consists in approximating the non-
convex feasible set of problem (1) by a convex set which contains
the original set as a subset. As a consequence, the solution of this
relaxed problem may not be feasible for the original problem. Gen-
erating a feasible (but generally only sub-optimal) solution from the
solution of the SDP problem can be achieved by means of the Gaus-
sian randomization technique [2]. However, this necessitates to solve
additional power control problems, as proposed in [3]. In specific, a
few hundred candidate weight vectors are generated in the random-
ization technique and for each candidate, a LP problem is solved to
obtain a feasible scale. Despite this rather costly procedure, it is not
guaranteed that a feasible solution can always be obtained in this

way.
In this paper, we tackle the problem from a different perspective.

Rather than relaxing the original feasible set, we restrict it in the
sense that we use a subset as a convex approximation of the original
set. Then, we use an iterative algorithm where in each iteration, this
approximation is adapted to the current solution. In this approach,
the approximate solution is successively improved.

3. ITERATIVE POWERMINIMIZATION

For the special case of multiuser downlink beamforming, whereG =
M , with instantaneous CSI at the transmitter, an equivalent convex
SOCP reformulation exists [1]. However, if only second-order statis-
tics CSI can be assumed and/or we consider the general multi-group
multicasting case, such an equivalent reformulation of the original
problem is no longer possible. However, the originally non-convex
problem can be approximated by a SOCP problem in this case.

Towards this end, let us rewrite themth QoS constraint in prob-
lem (1) as

√
wH

k Rmwk ≥

√√√√√γm

⎛
⎝∑

l �=k

wH
l Rmwl + σ2

m

⎞
⎠. (2)

Further, let us introduce the matrices and the vector

Hk,m �

[
σ2
m 0

T

0 (I − diag{ek})⊗Rm

]1/2

(3)

∀m ∈ Gk, ∀k ∈ K, w � [1,wT
1 , . . . ,w

T
G]

T

where⊗ stands for the Kronecker product, I denotes theG×G iden-
tity matrix, ek denotes the kth column of I and diag{a} stands for
a diagonal matrix whose diagonal entries are the elements of vector
a. Then, we can rewrite (2) as√

wH
k Rmwk ≥ √

γm||Hk,mw||2. (4)

In order to find a second-order cone (SOC) approximation of the
constraint in (4), its left hand side (LHS) needs to be linearized. In
the linearization proposed below, we exploit the fact that the l1-norm
of a vector a = [a1, . . . , aN ]T is a lower approximation of the cor-
responding Euclidian norm as follows.√√√√ N∑

n=1

|an|2 ≥ 1√
N

N∑
n=1

|an| (5)

Note that in (5), equality holds if and only if all elements of a have
the same magnitude. Further, note that this inequality still holds if
we use only a subset of the elements in a for the approximation, i.e.,√√√√ N∑

n=1

|an|2 ≥
√∑

n∈N̄

|an|2 ≥ 1√
N̄

∑
n∈N̄

|an| (6)

where we define the index set N̄ as a subset of the original set N ,
i.e., N̄ ⊆ N = {1, . . . , N} and N̄ = |N̄ |. To see that an appropri-
ate choice of the index set can improve the approximation, let us con-
sider the specific example of |a1| = 0 and |a2| = · · · = |aN | > 0
in which the approximation in (5) is not tight. However, if we de-
fine the subset N̄ = {2, . . . , N}, the inequalities in (6) are satisfied
with equality. With these observations, we next derive the proposed
linearization of the LHS of (4).

For simplicity of notation, we omit the index m in the follow-
ing discussion. Let us first use the eigenvalue decomposition of the
channel covariance matrix given byR =

∑N
n=1 λnvnv

H
n to rewrite
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the LHS of inequality (4) as√√√√ N∑
n=1

λnw
H
k vnv

H
n wk =

√√√√ N∑
n=1

|√λnw
H
k vn|2

≥ 1√
N̄

∑
n∈N̄

√
λn|wH

k vn| (7)

where λn and vn are the nth eigenvalue and eigenvector of R, re-
spectively, and N̄ can be any subset of N . Note that (6) has been
used to obtain the approximation in (7). The final step in our lin-
earization is similar to the procedure proposed in [5] and consists
in approximating the magnitude of a complex scalar by its real-part,
hence,

1√
N̄

∑
n∈N̄

√
λn|wH

k vn| ≥ 1√
N̄

∑
n∈N̄

√
λnRe{wH

k vn}. (8)

Note that the LHS of (8) is independent of a multiplication of each
vn by a rotation factor exp (−jαn), where αn is the corresponding
rotation angle. However, this multiplication changes the RHS of (8)
and can be used to improve the approximation [5] as we describe
later. Thus, we generalize the approximation (8) by replacing vn

with v̄n = vn exp (−jαn).
We can summarize the linearization steps in (7) and (8) as√

wH
k Rwk ≥ 1√

N̄

∑
n∈N̄

√
λnRe{wH

k v̄n}, (9)

where N̄ ⊆ N and v̄n = vn exp (−jαn), and approximate the
original, non-convex problem (1) by the following convex SOCP
problem

min
t∈R, w∈CGN

t

subject to t ≥ ||w||2, w1 = 1, (10)

1√
N̄m

∑
n∈N̄m

√
λm,nRe{wH

k v̄m,n}

≥ √
γm||Hk,mw||2, ∀m ∈ Gk, ∀k ∈ K

where N̄m ⊆ Nm, v̄m,n = vm,n exp (−jαm,n) and the index
m has been reinstalled. Problem (10) can be solved efficiently us-
ing interior-point methods [6]. Note that there are some degrees of
freedom in parameterizing this approximation. We can choose the
subsets N̄m as well as the rotation angles αm,n. Thus, the goal is to
find those N̄m and αm,n which yield the best approximate solution.
Based on the idea in [5], we propose to pursue this goal using an
iterative algorithm where the SOCP approximation is successively
improved.

Let {w(i)
k,opt}Gk=1 denote the solution to the SOCP problem (10)

for N̄m = N̄ (i)
m and v̄m,n = v̄

(i)
m,n in the ith iteration of our al-

gorithm. We can then find N̄ (i+1)
m and v̄

(i+1)
m,n of the next iteration

such that the approximation in the next iteration is optimized around
w

(i)
k,opt of the current iteration. This makes it possible to find an

improved solution w
(i+1)
k,opt in the next iteration which will be shown

below. Therefore, the idea is to maximize the norm bound on the
RHS of (9) for the current wk = w

(i)
k,opt of the ith iteration through

the choice of N̄ (i+1)
m and v̄

(i+1)
m,n in order to make the approxima-

tion as tight as possible. Instead of finding the optimal N̄ (i+1)
m using

an exhaustive search, we can search more efficiently for an optimal
N̄

(i+1)
m = |N̄ (i+1)

m | using the following deflation approach. For
wk = w

(i)
k,opt, we sort the eigenvalues and eigenvectors such that

the summands in the LHS of (7) are arranged in descending order,

i.e., λm,κ1 |w(i)H
k,optvm,κ1 |2 ≥ . . . ≥ λm,κN

|w(i)H
k,optvm,κN

|2 where
κn ∈ {1, . . . , N} and ∪nκn = {1, . . . , N}. Then, we choose
N̄

(i+1)
m according to

N̄
(i+1)
m = argmax

N̄m

1√
N̄m

N̄m∑
n=1

√
λm,κn

|w(i)H
k,optv̄

(i)
m,κn

| (11)

so that the approximation in (7) becomes closest to the Euclidian
norm. The optimal value N̄

(i+1)
m can efficiently be computed by

successively reducing N̄m in (11) starting form N̄m = N . After
computing the optimal index set N̄ (i+1)

m , the optimal rotation angles
α
(i)
m,n associated with the beamforming vector w(i)

k,opt obtained in

the ith iteration are obtained when w
(i)H
k,optv̄

(i+1)
m,n becomes real and

positive, hence for:

v̄
(i+1)
m,n = v̄

(i)
m,n exp

(
−jα

(i)
m,n

)
(12)

where α
(i)
m,n = ∠(w

(i)H
k,optv̄

(i)
m,n). In this case, the inequality (8) is

satisfied with exact equality for w(i)
k,opt and v̄

(i+1)
m,n [5]. For the pro-

pose algorithm summarized in Table 1, the following lemma applies
which guarantees the convergence to a local optimum of the original
problem (1).

Lemma 1: The iterative procedure summarized in Table 1 yields
an improved approximate solution in each iteration until the active
constraints remain unchanged in consecutive iterations.

Proof: Let us first proof that for wk = w
(i)
k,opt, the LHS of the

QoS constraints of problem (10) in iteration (i + 1) is greater or
equal to the corresponding LHS in iteration i.

1√
N̄

(i+1)
m

∑
n∈N̄

(i+1)
m

√
λm,nRe{w(i)H

k,optv̄
(i+1)
m,n } (13)

=
1√

N̄
(i+1)
m

∑
n∈N̄

(i+1)
m

√
λm,n|w(i)H

k,optvm,n|

≥ 1√
N̄

(i)
m

∑
n∈N̄

(i)
m

√
λm,n|w(i)H

k,optvm,n|

≥ 1√
N̄

(i)
m

∑
n∈N̄

(i)
m

√
λm,nRe{w(i)H

k,optv̄
(i)
m,n}

We proceed proving Lemma 1 by contradiction as follows. Assume
that the solution in iteration (i + 1) is the same as that in the pre-
vious iteration i, i.e., w(i+1)

k,opt = w
(i)
k,opt. Assume further that the

approximation of all active constraints in iteration i changes from
iteration i to iteration (i + 1). Then, we can see from inequality
(13) and the QoS constraints in (10) that the solution in iteration
(i+ 1) can be scaled down, still satisfying all QoS constraints. This
contradicts optimality of w(i+1)

k,opt = w
(i)
k,opt and we conclude that

||w(i+1)
k,opt ||2 < ||w(i)

k,opt||2 in this case.

We initialize our algorithm with the unrotated principal compo-
nent of each channel covariance matrix, i.e., we choose N̄ (1)

m = pm,
where pm denotes the index corresponding to the principal compo-
nent ofRm, and v̄(1)

m,n = vm,n. The iterative scheme is summarized
in Table 1 where I stands for the total number of iterations.

According to [7], the SOCP problem (10) can be solved with
a worst-case complexity of O(G3N3M1.5) using efficient interior-
point methods. This complexity scales linearly with the number of
iterations I . Our simulations have shown that a very small num-
ber of iterations I (e.g. I = 3) is sufficient to achieve performance
comparable to or even better than that achieved by the SDR-based
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Initialization: N̄ (1)
m = pm, v̄

(1)
m,n = vm,n

for i = 1, . . . , I

Solve problem (10) with N̄m = N̄ (i)
m and v̄m,n = v̄

(i)
m,n.

Perform the rotation of (12) with α(i)
m,n = ∠(w

(i)H
k,optv̄

(i)
m,n).

Find N̄ (i+1)
m according to (11).

end

Table 1: Proposed iterative procedure

approach of [3]. The overall complexity of the SDR-based approach
is that of a single SDP problem along withNrand times the complex-
ity of a LP problem. Here,Nrand stands for the number of generated
candidate vectors of which a few hundred are usually required, ac-
cording to [3]. The mentioned SDP problem can be solved with a
worst-case complexity ofO(M2(GN +M)2.5) [8] whereas the LP
requires a worst-case complexity ofO(G3.5+MG3.5) [3]. Thus, as
M increases, the computational complexity of our method decreases
relative to that of the SDR-based method.

4. ITERATIVE FEASIBILITY SEARCH

Similar to [5], the SOCP problem in (10) might not be feasible when
initialized as in Table 1. This is the case when the feasible set shrinks
to the empty set. However, the iterative feasibility search proposed in
[5] can straightforwardly be applied to find an initial approximation
of the QoS constraints for which problem (10) becomes feasible.
Furthermore, the admission control scheme of [5] can be used as
well. We refer to [5] for details concerning the iterative feasibility
search and the admission control procedure.

5. SIMULATION RESULTS

In our numerical simulations, we consider the following scenario
similar to that of [9]. M = 16 users are located in angular directions
distributed uniformly between 0◦ and 360◦. Users are partitioned
in G = 3 multicasting groups of similar size which are separated
in space. We consider a uniform linear transmit antenna array with
N = 6 elements spaced half a wavelength. According to [9], the
channel covariance matrix can be approximated by

[R(θ, σθ)]k,l = exp(jπ(k−l) sin θ) exp

(
− (π(k − l)σθ cos θ)

2

2

)
(14)

where θ and σθ denote the angular direction of the user and the
spread angle, respectively. The spread angle models local scatter-
ing. The larger this angle, the larger the number of local scatterers
by which the users are surrounded and the higher the rank of the
corresponding channel covariance matrix R. If σθ = 0, R is rank-
one. We compare the performance, in terms of transmitted power, of
the following three competing methods: the proposed method, the
method of [3] and the method of [5]. As mentioned earlier, the lat-
ter one is actually only applicable if the matrices Rm are rank-one.
However, independent of its rank, we can always approximate Rm

with its principal component to make the method of [5] applicable
in the higher-rank case. This corresponds to a less sophisticated ver-
sion of the proposed method where, instead of choosing the optimal
subset N̄ (i+1)

m according to (11), only the principal eigenvector is
chosen in every iteration, i.e., N̄ (i)

m = pm, i = 1, . . . , I . For the
method of [3], 300 candidate vectors have been generated in the ran-
domization procedure. In the other two methods, we have used only
I = 3 iterations.

Figure 1 depicts the total transmitted power versus the spread an-
gle, which is varied from 0◦ to 15◦, for the three methods. An ideal-
istic lower bound is also shown. It corresponds to the solution to the
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Fig. 1: Total transmitted power versus spread angle.

SDP problem which is obtained after applying the SDR to problem
(1) (see [3], [5]). It is clear from the figure, that for small spread an-
gles, the method of [5] and the proposed method have the same per-
formance. The reason is that in this region, the optimal subset con-
tains only the principal eigenvector in every iteration of the proposed
method. As the spread angle is further increased, the curves deviate,
revealing superior performance of the proposed method. Further,
we can observe that, for the wide range of spread angles between
3◦ and 11◦, our method clearly outperforms the method of [3]. An-
gles beyond 11◦ correspond to unrealistically strong scattering in the
vicinity of the users.
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