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ABSTRACT

We consider the problem of worst-case robust beamforming for
multi-group multicasting network with erroneous channel state in-
formation (CSI). In previous beamforming techniques robustness is
ensured for all mismatch matrices of bounded Frobenius norm. In
contrast, we present an alternative method of bounding the channel
uncertainties, where we only limit the trace of the mismatch ma-
trices. This approach leads to a problem formulation of reduced
complexity as compared to the previous methods. Our goal is to
minimize the total transmitted power subject to the worst-case user
quality-of service (QoS) constraints. Lagrange duality is used to
obtain a simple reformulation of the worst-case beamforming prob-
lem. The resulting non-convex problem can then be converted into a
convex form using semidefinite relaxation (SDR) that can be solved
efficiently using interior point methods. The resulting problem is a
linear second-order cone programming (SOCP) problem as opposed
to the quadratic SOCP problems in the previous robust approaches.
Simulation results also show that the proposed method offers a
significantly improved performance in terms of transmitted power.

Index Terms— Convex optimization, multicasting, broadcast-
ing, downlink beamforming, robust adaptive beamforming.

1. INTRODUCTION

In multi-group multicasting systems mobile users are subscribed to
different services such as video/audio broadcasting. Multiple sub-
scriber group may be served on the same radio resource by one or
multiple basestations using advanced multiantenna access technolo-
gies to improve quality-of-service (QoS) and mitigate multi-group
interference [1]. Recently multi-group multicasting techniques have
been implemented in modern wireless communications standards
such as the Multimedia Broadcast Multicast Service (MBMS) in
LTE and LTE-A.

In [1]-[2], multi-group multicasting beamforming techniques us-
ing perfect channel state information (CSI) have been studied. Since
the second order statistic of the wireless channel usually evolves at a
significantly lower rate as compared to the exact instantaneous chan-
nel, the use of covariance-based CSI can substantially reduce the
feedback overhead, especially in fast fading scenarios. Therefore,
in downlink beamforming, a number of approaches based on perfect
covariance-based CSI have been proposed; see [3] and references
therein. In practice, however, the CSI available at the transmitter
is prone to errors resulting, e.g., from feedback quantization, chan-
nel estimation, and feedback delay. In the presence of CSI errors,
the performance of the non-robust beamforming methods can sig-
nificantly degrade. Therefore, the development of robust adaptive
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beamforming techniques has recently attracted considerable atten-
tion for its practical significance in wireless systems [3]-[5].

These techniques provide robustness against CSI errors by
guaranteeing that the QoS constraints are satisfied for all possi-
ble mismatch matrices bounded by ellipsoids of given shapes and
sizes. These ellipsoids are generally described by the Frobenius
norm bounds, explicitly restricting all the entries of the mismatch
matrices to fall within the bound of the ellipsoid. In this paper we
present an alternative approach of modeling the uncertainty sets.
In our approach we bound only the sum of the diagonal elements
of the mismatch matrices to obtain a meaningful description of
the uncertainty set. Interestingly we can show, that in worst case
robust beamforming for multi-group multicasting systems, no re-
strictions for the off-diagonal elements of the mismatch matrix need
to be imposed. This is due to the observation in our final problem
reformulation, that for the worst-case mismatch matrices a positive-
semidefinite constraint that bounds the off-diagonal elements in the
mismatch matrices, is implicitly satisfied. Similarly, as in Frobe-
nius norm based robust approaches of [3]-[5], our approach leads
to semidefinite program (with non-convex rank-one constraints) in
which a penalty term that quantifies the price for robustness can
be identified. Our goal is to minimize the total transmitted power
subject to the worst-case QoS constraints, which are expressed in
minimum signal-to-interference-plus-noise ration (SINR) require-
ments. Using Lagrange duality theory and semidefinite relaxation
(SDR), we approximate the original non-convex worst-case beam-
forming problem by a semidefinite programming (SPD) problem,
which can be solved using convex optimization tools.

Notation: E{·}, ‖ · ‖F , | · |, tr(·), (·)H , and rank(·) denote the
statistical expectation, Frobenius norm of a matrix, absolute value
of a complex number, trace of a matrix, Hermitian transpose, and
rank of a matrix, respectively. Y � 0 means that Y is a positive
semidefinite matrix. diag{·} denotes a diagonal matrix and λmax{·}
denotes the principal eigenvalue of a matrix.

2. SYSTEM MODEL

Let us consider the multi-group multicasting scenario with a single
N -antenna transmitter [1]. We assume that there are M users di-
vided into G subscriber groups {G1, ..., GG} such that 1 ≤ G ≤ M ,
where Gi contains the indices of the users, which receive the in-
formation of the multicasting stream i, where i ∈ {1, ..., G}. Ev-
ery user belongs to a single group; Gi ∩ Gl = ∅ if i �= l and
∪G

i=1Gi = {1, ..., M}. We define w � [wT
1 , ...., wT

G]T where wi

is the N × 1 beamforming weight vector of the ith group. Then the
SINR of the kth user from the ith group Gi is given by

SINRk =
wH

i Rhk
wiP

j �=i w
H
j Rhk

wj + σ2
k

, j ∈ {1, ..., G} (1)
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where Rhk
� E{hkh

H
k } and hk are the N×N channel covariance

matrix and N × 1 channel vector of the kth user, respectively, and
σ2

k is the noise variance at the receiver of kth user. The goal of the
classic multi-group multicasting beamforming problem is to mini-
mize the total transmitted power subject to the user QoS constraints.
This problem can be formulated as [1]

min
w

w
H
w

s.t. SINRk ≥ γk, ∀k ∈ Gi, i ∈ {1, ..., G} (2)

where γk is the minimal required SINR for kth user in the ith group.

3. CHANNEL ERROR MODEL

Let hk denote the exact random channel vector containing the flat-
fading complex channel coefficients of the kth user and assume that
ĥk is the corresponding estimated channel vector. If the random
vector δhk models the errors in the channel estimation, then ĥk =
hk + δhk. We can write R

ĥk
� E{ĥkĥ

H
k } = Rhk

+ Δ̃k where

the error matrix Δ̃k � E{hkδhH
k } + E{δhkh

H
k } + Rδhk

may be
indefinite in general with Rδhk

� E{δhkδhH
k }.

Let us consider the specific example when the Least Squares
(LS) channel estimation is used and the only error in the channel is
due to the errors in the estimation process. The error in the chan-
nel estimate can then be expressed as δhk = M

†
knk where nk is

the training noise vector, M†
k � (MH

k Mk)−1MH
k with Mk being

the training matrix; see [6] for details. Assuming δhk to be zero
mean and independent to the channel hk , the error matrix Δ̃k can
be written as

Δ̃k = M
†
kE{nkn

H
k }M†

k

H
(3)

which is a positive semidefinite matrix.

4. ROBUST BEAMFORMING

In practical systems the true channel covariance matrices Rhk
are

unknown and only erroneous estimates R̂hk
are available. In this

case, in the QoS based worst-case robust beamforming proposed
in [3]-[5], the beamformig weight vectors are designed such that
the minimum SINR requirements are satisfied for all possible mis-
matched covariances R̂hk

− Δk for which the mismatch matrices
Δk fall within a unit-sphere defined by

‖Δk‖F ≤ εk, k = 1, ..., M (4)

for predefined bounds εk. In this paper we propose an alternative
worst-case robust beamforming approach in which the uncertainty
sets are defined as:

tr(Δk) ≤ μk, Δk � 0, k = 1, ..., M. (5)

Comparing the uncertainty set in (5) with the one in (4) we observe
that in the latter set the Frobenius norm explicitly restricts all en-
tries of the Δk, whereas in our set only the diagonal elements of
mismatch matrices are explicitly limited. However, with the posi-
tive semidefinite constraint in (5) the off-diagonal entries of Δk are
implicitly bounded, see [7, p. 398]. Interestingly, as shown later
in Section 4, this positive semidefinite constraint can also be omit-
ted, and hence the uncertainty set in (5) can be extended, without
changing the solution of the robust beamforming problem. For the
example discussed at the end of Section 3 the bounds defined in (4)

and (5) can be found using (3). Finally, we remark that for Δk � 0,
the inequality ‖Δk‖F ≤ tr(Δk) holds, which shows that for the
special choice εk = μk , the uncertainty set (5) is contained in the
set (4). The worst-case robust multicasting beamforming problem
can be formulated as

min
w

w
H
w

s.t. min
tr(Δk)≤μk

wH
i (R

ĥk
−Δk)wiP

j �=i w
H
j (R

ĥk
−Δk)wj+σ2

k

≥ γk

R
ĥk

− Δk � 0, Δk � 0, ∀k ∈ Gi, ∀i, j ∈ {1, ..., G} (6)

where Δk is a Hermitian matrix. The constraint R
ĥk

− Δk � 0 in
(6) guarantees that the only those mismatched covariance matrices
are considered in the robust approach which are positive semidefi-
nite. Defining Aik � wiw

H
i − γk

P
j �=i wjw

H
j , the problem (6)

can be reformulated as

min
w

w
H
w

s.t. min
tr(Δk)≤μk

tr((R
ĥk

−Δk)Aik) ≥ σ2
kγk

R
ĥk

− Δk � 0, Δk � 0, ∀k ∈ Gi, ∀i ∈ {1, ..., G}. (7)

Taking a similar approach as in [5] we consider the worst-case QoS
constraint in (7) as a separate optimization problem for which the
following Lemma applies:
Lemma 1 (equivalence of worst-case QoS constraints): If we fix the
non-zero weight vector w̄ (and hence the matrices Aik), then the
following problems have the same optimal value:

min
Δk

tr((R
ĥk

− Δk)Aik)

s.t. R
ĥk

−Δk � 0, Δk � 0, tr(Δk) ≤ μk, (8)

and
max
βk,Zk

tr(R
ĥk

(Aik − Zk)) − βkμk

s.t. βkI − Aik + Zk � 0, Zk � 0, βk ≥ 0. (9)

Proof: The Lagrangian associated with problem (8) is given by

fk(Δk, βk,Zk,Qk) =tr((R
ĥk

−Δk)Aik)+βk(tr(Δk)−μk)

−tr((R
ĥk

−Δk)Zk) − tr(ΔkQk). (10)

where βk is the Lagrange multipliers corresponding to the trace con-
straint in (8) and the Hermitian matrix Zk and Qk are the Lagrange
multipliers corresponding the first and the second positive semidef-
inite constraint in (8), respectively. Maximizing with respect to Δk

and substituting Yk � βkI − Aik + Zk − Qk yields the Lagrange
dual problem corresponding to (8)

inf
Δk

fk(Δk, βk,Zk,Qk)=

(
tr(R

ĥk
(Aik−Zk))−βkμk, Yk � 0

−∞, otherwise

(11)

which can also be written as

max
βk,Zk

tr(R
ĥk

(Aik − Zk)) − βkμk

s.t. βkI −Aik + Zk −Qk � 0

Zk � 0, Qk � 0, βk ≥ 0. (12)

Note that problem (8) is convex and bounded below. Moreover, let
UkΛkU

H
k be the matrix decomposition of R

ĥk
, then there exists
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Δk = UkDkU
H
k such that [Dk]ij = min{[Λk]ij , μ̃k} with 0 <

μ̃k < μk/N which is strictly feasible. Using the Slater’s condition
[8], we have strong duality between (8) and (9).

It is clear from (12) that when (β�
k ,Z�

k,Q�
k) is an optimal solu-

tion of (12), then (β�
k ,Z�

k,0) is also a feasible point corresponding
to the same objective function value. Therefore, we can set w.l.o.g.
Q�

k = 0, and (12) reduces to (9).
Since minx x s.t. xI − M � 0 is equivalent to λmax(M), the

problem (9) can be compactly written as

max
Zk�0

tr(R
ĥk

(Aik − Zk)) − λmax(Aik − Zk)μk. (13)

Using Lemma 1 and (13), the problem (7) can be formulated as

min
w

w
H
w

s.t. max
Zk�0

tr(R
ĥk

(Aik − Zk))−λmax(Aik − Zk)μk ≥ σ2
kγk

∀k ∈ Gi, ∀i ∈ {1, ..., G}. (14)

The first constraint in (14) is satisfied if there exists some Zk � 0
for which

tr(R
ĥk

(Aik − Zk))−λmax(Aik − Zk)μk ≥ σ2
kγk. (15)

The problem (14) then reduces to

min
w,{Zk}

w
H
w

s.t. tr(R
ĥk

(Aik − Zk)) − λmax(Aik − Zk)μk ≥ σ2
kγk

Zk � 0, ∀k ∈ Gi, ∀i ∈ {1, ..., G}. (16)

Defining Wi � wiw
H
i and Bik � Wi − γk

P
j �=i Wj , the prob-

lem (16) can be equivalently reformulated as

min
{Wi},{Zk}

tr(

GX
i=1

Wi)

s.t. tr(R
ĥk

(Bik − Zk)) − λmax(Bik − Zk)μk ≥ σ2
kγk

Wi � 0, rank(Wi) = 1

Zk � 0, ∀k ∈ Gi, ∀i ∈ {1, ..., G}. (17)

Non-convexity in the problem (17) is only due to the rank-one con-
straint. Therefore, following the so-called SDR technique [3], [9],
we remove the rank-one constraint from problem (17) to obtain a
convex SDP problem. The resulting problem can be solved effi-
ciently using convex optimization tools such as CVX [10].

There is an interesting implication following from observation
made above, that the Lagrange multipliers corresponding to the pos-
itive semidefinite constraint in (8) at the optimum of (12) can be cho-
sen as Q�

k = 0. This implies, from the complementary slackness
conditions of the corresponding Karush-Kuhn-Tucker (KKT) opti-
mality system [8], that the positive semidefinite constraint Δk � 0
is inactive at optimum and can therefore be removed in the origi-
nal problem (6) without changing the resulting problems in (16) and
(17). In other words, even if the positive semidefinite constraints
Δk � 0, that together with the trace bound tr(Δk) ≤ μk restricts
the off-diagonal entries of the mismatch matrices, are omitted the
off-diagonal entries in the worst-case mismatch matrix are in fact
bounded [7, p. 398].

While Q�
k can be chosen to be a zero matrix, the optimal

Lagrange multiplier matrix Z�
k corresponding to the first positive-

semidefinite constraint in (6) is a non-zero matrix in general. To

illustrate this consider the counter-example of a single group mul-
ticasting system with M = 2 users, G = 1, σ2

k = 1, γk = 1, and
estimated channel covariances as

R
ĥ1

= diag{0, 1.5} R
ĥ2

= diag{2, 0}. (18)

It can readily be verified that in this case a optimal solution to (16)
is given by

W
�
1 = diag{1, 2} Z

�
1 = diag{1, 0} Z

�
2 = diag{0, 2} (19)

and there exists no optimal solution with Z�
k = 0. This means that

the positive definite constraint on the mismatched channel covari-
ance matrix in (6), i.e. R

ĥk
− Δk � 0, is active. Therefore, the ro-

bust beamforming problem with this constraint provides beamform-
ers with a lower total transmitted power compared to the problem
without the constraints. Further note that for μk = 0, the prob-
lem (17) reduces to the non-robust problem and, therefore, the terms
λmax(Bik − Zk)μk in problem (17) quantify the penalty paid for
achieving the robustness. From (9) and (13), we can see that the
penalty terms in problem (17) are linear. On the other hand, the
penalty terms in the problem formulation of [5] are quadratic. There-
fore, our problem formulation is comparatively less complex.

Similar to the SDR approach in [4], it is generally not guaran-
teed that the solutions of SDR-based problems are rank-one. To ob-
tain rank-one solutions, we follow the same approach as in [1]. We
find candidate beamforming vectors using the Gaussian randomiza-
tion technique [11] and then solve the multi-group multicast power
control problem on (16) to obtain a candidate solution. This requires
solving a linear programming problem. This process is repeated for
a predetermined number of iterations and the best candidate with
respect to the objective function is chosen as the solution.

5. SIMULATION RESULTS

In the first part of our simulations, we consider a multicasting net-
work with G multicast groups of equal size, N = 6 antennas at the
transmitter and M = 10 users. The channel model of [12] is consid-
ered. We assume that the true channel vector hk(t) can be written
as hk(t) = h̄k + h̃k(t) where h̄k is the mean of hk(t), and h̃k(t)
is a zero-mean random variable vector. For any hk(t), we choose
h̄k = (1/

√
1 + αk)[ejθ1k , ...., ejθNk ]T where θik is a uniform ran-

dom variable chosen from [0, 2π] and αk is the parameter modeling
the degree of uncertainty in the CSI. Then the covariance of hk can
be written as Rhk

= h̄kh̄
H
k + αkI/(1 + αk). Note that the di-

agonal elements of Rhk
are all equal to one. This means that the

power gain of each channel coefficient is one. The noise power at
the receiver is assumed to be 10 times smaller than the power gain
of the channel coefficient. We assume that the estimated channel
ĥk = hk + δhk where δhk is a zero-mean i.i.d. Gaussian noise
vector with E{hkδhH

k } = 0, E{δhH
k δhk} = η2

k and η2
k = 0.1 dB.

Then, the covariance of the estimated channel ĥk can be expressed
as R

ĥk
= Rhk

+ Rδhk
and, correspondingly, we choose the trace

bound as μk = tr(Rδhk
) = η2

k . We introduce the normalized con-
straint value ζk as

ζk =
wH

i Rhk
wi

γk(
P

j �=i w
H
j Rhk

wj + σ2
k)

, (20)

as an abstract measure of the constraint satisfaction, i.e., the corre-
sponding QoS constraint is satisfied if and only if ζk ≥ 1, to evaluate
the performance of our proposed method and the non-robust method
of [1].
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Fig. 1. Histogram of normalized constraint value.

Fig. 1 displays the histograms of ζk for G = 1, 2, γk = 0
dB, and αk = −20 dB. As can be observed from Fig. 1, the non-
robust technique of [1] violates almost all of the constraints when
G = 1 and only satisfies about 50% of the constraints when G = 2.
However, our proposed approach satisfies all of the constraints for
both the cases.

In order to compare our technique to the non-robust and robust
methods of [3] and [5], we consider the downlink beamforming sce-
nario, which is a special case of the multigroup multicasting scenario
with G = M . We consider the case M = 3 without changing the
remaining parameters from the first simulation. The true covariance
matrices Rhk

are generated using the same channel model as used
in [3] and [5] with the users located at θ1 = 3◦, θ2 = 10◦ and
θ3 = 17◦ relative to the array broadside. The angular spread of
σθ = 2◦ is considered. The channel error δhk is generated similar
to the previous simulation. For a fair comparison, we compute the
bound for the robust method of [5] as εk = ‖Rδhk

‖F = η2
k/

√
N . In

Fig. 2, we plot the minimum total transmitted power versus the min-
imal required SINR for all the three approaches. It can be seen that
both robust techniques show similar performance for lower SINRs.
However at higher SINRs the penalty for the robustness reflected
in the total transmitted power is lower for the proposed method.
Further, it is interesting to note that the penalty for robustness for
the proposed approach is only moderate when comparing the total
transmitted power of our approach to the respective power in the
non-robust approach.
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