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ABSTRACT

Spatial and multiuser diversity are two types of diversity techniques
for delivering reliable high-date-rate services. Spectral diversity
comes from opportunistic scheduling in the frequency domain en-
abled by the OFDMA technique, and is influenced by partial feed-
back design. By employing the best-M partial feedback strategy, we
provide a unified view of spatial, spectral, and multiuser diversity
through asymptotic (in users) analysis. We examine the tail behavior
of the distribution of the received channel quality information (CQI)
at the scheduler to prove the type of convergence as well as to derive
the asymptotic approximations for the average spectral efficiency
under partial feedback. We investigate the application of our analy-
sis to different spatial diversity schemes. Our derived results can be
used to quickly determine the minimum required partial feedback in
a general multiuser MIMO-OFDMA system.

Index Terms— Partial feedback, multiuser MIMO, OFDMA,
spatial diversity, asymptotic analysis

1. INTRODUCTION

Current wireless systems leverage various types of diversity to
achieve reliable and high throughput services. The nature of the
various forms of diversity can be broadly classified into the follow-
ing two types. The first type, such as spatial diversity [1], normally
utilizes physical layer techniques to provide reliable transmission by
mitigating the detrimental effect of channel fading. On the contrary,
the other type such as multiuser diversity, exploits the beneficial
effect of channel variation to render opportunistic scheduling gain in
the media access control (MAC) layer. With the emerging OFDMA-
based wireless systems, scheduling decision is performed across
users as well as resource blocks. This induces another cross-layer
diversity in the frequency domain: the spectral diversity. Spectral
diversity is closely related to partial feedback design wherein only
the channel quality information (CQI) of certain favorable resource
block is conveyed back to the scheduler in order to save close-loop
feedback resource [2]. In this paper, we rely on one promising
partial feedback strategy which is currently considered in practical
systems such as LTE. It is called the best-M partial feedback strat-
egy, where users order and convey the M best CQI among the total
resource blocks to the scheduler.

The analysis of the general best-M partial feedback strategy is
challenging and analytical expressions in the literature are confined
to the special full feedback and best-1 feedback case. Only recently
closed form results have been proposed by Hur and Rao [3] for the
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general best-M partial feedback. However, the results are based on
exact analysis which turn out to be cumbersome and do not easily
lend themselves to providing insight for further analysis. To enhance
tractability, asymptotic analysis based on extreme value theory [4]
can be utilized to obtain interpretable results. Zhou and Dai [5] an-
alyze the interaction between spatial and multiuser diversity by ex-
amining the scheduling gain. The approach proposed by Song and
Li [6] studies the asymptotic throughput in the single carrier system.
To the best of our knowledge, almost all the previous treatment of
asymptotic analysis are based on the assumption of full feedback.
In [7], we derived asymptotic expressions and proposed a general
theorem to incorporate the general best-M partial feedback design.
However, a SISO framework was assumed in [7] and the general
analysis with MIMO systems is still lacking. In this paper, our goal
is to incorporate the available spatial dimension to provide a unified
asymptotic view of spatial, spectral, and multiuser diversity. This
unified analysis enables us to quickly determine the minimum re-
quired partial feedback from the asymptotic approximations.

2. SYSTEM MODEL

We consider a downlink multiuser MIMO OFDMA system with one
base station equipped with Nt transmit antennas and K users each
equipped with Nr receive antennas. We assume that the system
consists of R resource blocks with one resource block as the basic
feedback and scheduling unit. We consider an asymmetric scenario
where different users can have diverse large scale channel gains and
denote Gk as the large scale channel gain between the transmitter
and user k. The large scale channel gain may consist of path loss,
antenna gain, and shadowing which is assumed known in advance
by the transmitter through infrequent feedback or location aware-
ness [8]. We denote the frequency domain channel transfer func-
tion between transmit antenna j and receive antenna i of user k at
resource block r as Hk,r,i,j . Hk,r,i,j is modeled as complex Gaus-
sian distributed random variable with zero mean and unit variance.
We also assume that Hk,r,i,j is independent across users, resource
blocks, and antennas. The received signal of user k at resource block
r is given by

uk,r =
√

PGkHk,rsk,r + vk,r, (1)

where P is the transmit power per resource block, sk,r is the trans-
mitted symbol, and vk,r is the additive white noise distributed with
CN (0, σ2). Note that Hk,r is the equivalent channel depending on
the spatial diversity employed in the system. Therefore, it is a func-
tion of Hk,r,i,j which is explored in later sections. The signal-to-
noise ratio (SNR) can be written as

SNRk,r = ρkZk,r, (2)
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where ρk � PGk
σ2 denotes the large scale channel effect of user k,

and Zk,r � |Hk,r|2 represents the small scale channel effect of user
k at resource block r. Since ρk is known in advance by the system,
we denote Zk,r as the CQI of user k at resource block r.

3. ASYMPTOTIC ANALYSIS

3.1. Best-M Partial Feedback Strategy

The feedback policy is that users measure CQI for each resource
block at their receivers and feed back the CQI values of the best M
resource blocks from among the total R values. For each resource
block, the scheduling policy chooses the user for transmission with
the largest CQI among the users who fed back CQI to the transmitter
for that resource block. It can be easily seen that users are equiproba-
ble to be scheduled because the scheduler only takes into account the
small scale channel effect. Also, we assume that if no user provides
CQI for a certain resource block, then scheduling outage happens
and the transmitter does not utilize it for transmission.

We know that Zk,r are independent and identically distributed
(i.i.d.) across users and resource blocks. For notational simplicity,
we denote it as Z. We denote Yk,r,M as the received CQI at the
transmitter for user k at resource block r under the best-M partial
feedback policy, and simplify it as YM due to the i.i.d. assumption.
Due to our scheduling policy, the scheduled user k∗

r at resource block
r is selected from the set of users providing CQI for that resource
block (we denote the set as Ur,M ), namely

k∗
r = arg max

k∈Ur,M

Yk,r,M , (3)

The cumulative distribution function (CDF) of YM acts as the
building block in deriving the average spectral efficiency of the sys-
tem. We present the result through the following lemma.

Lemma 1. The CDF of YM is given by

FYM (x) =

M−1∑
m=0

ξ1(R, M, m)(FZ(x))R−m, (4)

where ξ1(R, M, m) =
∑M−1

i=m
M−i

M

(
R
i

)(
i
m

)
(−1)i−m

.

Proof. See [3].

The explicit expression for the average spectral efficiency is pre-
sented in [3]. We want to emphasize that the closed form results are
cumbersome and do not easily lend themselves to offering insights.
Therefore, we resort to asymptotic analysis for further investigation.

3.2. Procedure for Determining the Asymptotic Approximation

In the asymptotic analysis, we first assume symmetric large scale
channel effect ρ for notational simplicity. Then we tailor our results
to the specific cases with asymmetric large scale channel effects. We
aim to find the limiting distribution of the maximum throughput in
order to derive the asymptotic expression for the average spectral
efficiency. Specifically, we examine the limiting distribution of the
throughput WM ,

WM = T (YM ) = log2(1 + ρYM ). (5)

We provide the following best-M limiting throughput distribution
(LTD-M) theorem to the general partial feedback OFDMA system
as follows.

Theorem 1. (LTD-M Theorem) Assume that under the best-M par-
tial feedback scheme with R resource blocks and K users, the CQI
received at the transmitter YM is a nonnegative random variable with
CDF FYM (x) such that fYM (x) = F ′

YM
(x) > 0 and ω(FYM ) �

sup{x : FYM < 1} = ∞. If FYM ∈ D(G3), i.e., FYM belongs to
the domain of attraction of the Gumbel distribution, then the distri-
bution of the throughput FWM (r) = FYM (T−1(r)) ∈ D(G3), i.e.,
FWM belongs to the domain of attraction of the Gumbel distribution.
Moreover, the normalizing constants for user k are given by

ak:K(M) = log2(1 + ρkF−1
YM

(1 − R
KM

)),

bk:K(M) = log2

(
1+ρkF−1

YM
(1− R

KMe
)

1+ρkF−1
YM

(1− R
KM

)

)
.

(6)

Proof. See [7].

The LTD-M theorem enables us to study the distribution of YM

instead of directly examining FWM . We can approximate the aver-
age spectral efficiency C(M) by the asymptotic expression C(M):

C(M) =
1

K

(
1 −

(
1 − M

R

)K
)

K∑
k=1

(ak:K(M) + E0bk:K(M)),

(7)
where E0 is the Euler constant.

We see from (4) that the statistical property of YM depends on
Z, which relies on different spatial diversity schemes. We know that
the asymptotic convergence property involves only the tail property
of the distribution. We examine a general form of distribution in the
following theorem, which incorporate common fading models and
spatial diversity schemes.

Theorem 2. If fZ(x) is tail equivalence to xαe−βx as x → ∞ with
β > 0 and any α, then FYM ∈ D(G3).

Proof. (Sketch) In order to prove FYM ∈ D(G3), we need to show

that lim
x→∞

d
dx

[
1−FYM

(x)

fYM
(x)

]
= 0. Carrying out the differentiation,

another equivalent condition is lim
x→∞

(FYM
(x)−1)f ′

YM
(x)

(fYM
(x))2

= 1. We

firstly substitute FYM from (4) and fZ(x) = βα+1

Γ(α+1)
xαe−βx to de-

rive fYM and f ′
YM

, then we can complete the proof by evoking the

fact that
∑M−1

m=0 ξ1(R, M, m) = 1 and applying the L’Hospital’s
rule.

Remark: Though we assume Rayleigh fading for channel mod-
eling, Theorem 2 can be developed to address common class of chan-
nel models, such as Ricean fading, Nakagami fading, and log-normal
fading. Due to space limit, we do not elaborate on this and utilizes
Rayleigh fading for further spatial diversity analysis.

The final step to obtain the explicit form of the normalizing con-
stants in Theorem 1 involves in evaluating F−1

YM
. Due to the compli-

cated form of FYM , the normalizing constants for the general best-
M partial feedback can not be expressed in a simple form with el-
ementary functions except for the special full feedback and best-1
feedback cases. Therefore, we provide the following tight functional
approximation

FYM (x) � F̃YM (x) = (FZ(x))
R
M . (8)

Up to now, we have developed the sufficient conditions for checking
the type of convergence and proposed a tractable functional approxi-
mation and the LTD-M theorem to obtain the normalizing constants.
These normalizing constants are utilized to calculate the asymptotic
approximation to the average spectral efficiency of the system.
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Now we can determine the minimum required partial feedback.
The method is explored in [3] and [7], where the ratio between the
average spectral efficiency achieved by minimum required partial
feedback M∗ and by full feedback exceeds a pre-defined threshold
η, namely

Find the minimum M∗, s.t.
C(M∗)
C(N)

≥ η (9)

Due to the cumbersome expressions from the exact analysis, our pro-
posed method is to substitute the asymptotic approximations to de-
termine M∗.

4. DIFFERENT SPATIAL DIVERSITY SCHEMES

Recall that the specific form of Z depends on the spatial diversity
scheme in the system. In this section, we consider three spatial di-
versity schemes: 1) transmit antenna selection/selective combining
(TAS/SC) scheme; 2) orthogonal space-time block codes (OSTBC)
scheme; 3) transmit antenna selection/maximum ratio combining
(TAS/MRC) scheme. Note that all three schemes are adequate to
achieve full spatial diversity order over the MIMO channels. Also,
we assume that the total transmit power across Nt antennas is the
same for the three schemes for fair comparison.

4.1. TAS/SC Scheme

In this scheme, the system selects the transmit receive antenna pair
with the strongest small scale channel effect from NtNr possible
antenna pairs. Thus the equivalent channel and the CQI of user k at
block r can be expressed as

Zk,r = |Hk,r|2 = max
i,j

|Hk,r,i,j |2. (10)

We can obtain the CDF of Z from order statistics, F
TAS/SC
Z (x) =

(1 − e−x)NtNr . Then the PDF of Z can be derived as

f
TAS/SC
Z (x) = NtNr(1 − e−x)NtNr−1e−x. (11)

Therefore, Theorem 2 holds with α = 0, and β = 1. By employing
the functional approximation, we can approximate the normalizing

constants a
TAS/SC
k:K (M), b

TAS/SC
k:K (M) as follows

ã
TAS/SC
k:K (M) = log2

(
1 + ρk ln

(
1

1−(1− R
KM

)
M

NtNrR

))
,

b̃
TAS/SC
k:K (M) = log2

⎛
⎜⎜⎜⎝

1+ρk ln

⎛
⎜⎝ 1

1−(1− R
KMe

)
M

NtNrR

⎞
⎟⎠

1+ρk ln

⎛
⎜⎝ 1

1−(1− R
KM

)
M

NtNrR

⎞
⎟⎠

⎞
⎟⎟⎟⎠ .

(12)
We can then substitute the above results into (7) to obtain the asymp-
totic approximation to the average spectral efficiency of the system.

4.2. OSTBC Scheme

OSTBC scheme leverages coding over transmit antennas and time to
realize full spatial diversity order. From [1], the equivalent channel
as well as the CQI of user k at block r is the square of the Frobenius
norm of the channel matrix normalized by Nt, namely

Zk,r = |Hk,r|2 =
1

Nt

Nr∑
i=1

Nt∑
j=1

|Hk,r,i,j |2. (13)

Thus Z follows the Gamma distribution with G(NtNr, Nt) with
the CDF given by the incomplete Gamma function ratio, i.e.,

FOSTBC
Z (x) = Γ̃(NtNr, Ntx) = 1

Γ(NtNr)

∫ Ntx

0
tNtNr−1e−tdt.

The PDF of Z is derived as

fOSTBC
Z (x) =

NNtNr
t

Γ(NtNr)
xNtNr−1e−Ntx. (14)

It is clear that Theorem 2 holds with α = NtNr − 1, and β = Nt.
By employing the functional approximation, we can approximate the
normalizing constants aOSTBC

k:K (M), bOSTBC
k:K (M) as follows

ãOSTBC
k:K (M) = log2

(
1 + ρkΓ̃−1

(NtNr,Nt)
((1 − R

KM
)

M
R )

)
,

b̃OSTBC
k:K (M) = log2

(
1+ρkΓ̃−1

(NtNr,Nt)
((1− R

KMe
)

M
R )

1+ρkΓ̃−1
(NtNr,Nt)

((1− R
KM

)
M
R )

)
,

(15)
where Γ̃−1

(·,·)(·) is the inverse incomplete Gamma function. It should

briefly be noted that the calculated expression acts as an upper bound
because the full code rate for complex OSTBC is only achieved with
Nt = 2.

4.3. TAS/MRC Scheme

The TAS/MRC scheme realizes antenna selection at the transmitter
and MRC at the receiver. The equivalent channel and the CQI of
user k at block r can be formulated as

Zk,r = |Hk,r|2 = max
j

Nr∑
i=1

|Hk,r,i,j |2. (16)

We can obtain the CDF of Z as F
TAS/MRC
Z (x) = (Γ̃(Nr, x))Nt .

The PDF of Z is derived to be

f
TAS/MRC
Z (x) =

Nt(Γ̃(Nr, x))Nt−1

Γ(Nr)
xNr−1e−x. (17)

Therefore, Theorem 2 holds with α = Nr − 1, and β = 1. By
employing the functional approximation, we can approximate the

normalizing constants a
TAS/MRC
k:K (M), b

TAS/MRC
k:K (M) as follows

ã
TAS/MRC
k:K (M) = log2

(
1 + ρkΓ̃−1

(Nr,1)((1 − R
KM

)
M

NtR )
)

,

b̃
TAS/MRC
k:K (M) = log2

(
1+ρkΓ̃−1

(Nr,1)((1− R
KMe

)
M

NtR )

1+ρkΓ̃−1
(Nr,1)((1− R

KM
)

M
NtR )

)
.

(18)
We can then substitute the above results into (7) to obtain the asymp-
totic approximation to the average spectral efficiency of the system.

5. NUMERICAL RESULTS

We assume the number of resource blocks R = 16, the number of
transmit antennas at the base station Nt = 4, the number of receive
antennas residing in the user side Nr = 2. We firstly examine the
asymptotic analysis in the symmetric case where users have the same
large scale channel effect. In Fig. 1 we compare the average spectral
efficiency obtained by the exact analysis and by our proposed asymp-
totic approximation under different symmetric ρ for the best-M par-
tial feedback strategy. Results are shown for all the aforementioned
three spatial diversity schemes. It can be seen that the asymptotic
approximation tracks the system performance well even for small
number of users. Generally speaking, we can order the performance
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Fig. 1. Comparison of the average spectral efficiency for best-M feedback obtained using the exact analysis and the asymptotic analysis under
different ρ for different M with respect to the number of users (ρ = 0 dB, 10 dB, 20 dB; N = 16; M = 1, 2, 4; Nt = 4, Nr = 2): (a)
TAS/SC scheme; (b) STBC scheme; (c) TAS/MRC scheme.
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Fig. 2. The TAS/MRC scheme under asymmetric scenario: (N =
16; Nt = 4, Nr = 2; λ = 0.05; η = 0.9, 0.99) (a) The average
spectral efficiency with respect to the number of users; (b) Com-
parison of the minimum required M obtained from simulation and
asymptotic analysis under different thresholds.

achieved by the three schemes as: TAS/MRC, TAS/SC, and STBC
with TAS/MRC being the best. The converse ranking would be the
implementation complexity.

Fig. 2 examines the asymmetric case where users experience
different large scale channel effects. We employ the exponential de-
cay model [3]: ρk = ρe−λk, such that

∑K
k=1 ρk = K. We consider

the TAS/MRC scheme with λ = 0.05. Since our scheduling policy
makes decision on the small scale channel effect, it may decrease
the average spectral efficiency when the number of users increases.
That is due to the exponential decay model which expands the vari-
ation of the average spectral efficiency and the concave property of

the throughput function. Fig. 2 (a) compares the average spectral
efficiency from simulation as well as our proposed asymptotic ap-
proximation. It can be seen that there is a good agreement between
the two. We also determine the minimum required partial feedback
in Fig. 2 (b). We set two thresholds in (9) η = 0.9, 0.99, and ob-
serve that the results obtained using asymptotic analysis tracks the
results from simulation very well, especially for lower threshold and
large number of users. Therefore, in a practical multiuser MIMO-
OFDMA system, our proposed asymptotic analysis can be utilized
to quickly determine the minimum required partial feedback given
the system operating parameters and the number of associated users.
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