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ABSTRACT

This paper studies the problem of finding the optimal route
of a stream between the transmitter and the receiver in an
ad hoc network while minimizing the total power consump-
tion. The criterion is the minimum power, and the fact that
the stream must reach its destination is used as a constraint.
Compared to previous approaches, we introduce more flexi-
bility by allowing the stream to be split between several in-
termediate destinations, and we do not use the specific ap-
proximations (mainly high SNR) required to make the prob-
lem convex. Therefore, the main difficulty is due to the non
convexity of the problem. In this contribution, we address
a simple situation (flat fading channels, constant during the
optimization process, simple transmitters and receivers) in
order to demonstrate some properties of the problem. Fi-
nally, we propose an algorithm which, at least in some cases,
is able to overcome the non convexity. Illustrations of the
path followed by the algorithm demonstrates that it is able
to find the global optimum even is difficult cases.

Index Terms— Power allocation, wireless networks, ad
hoc network, optimization, circuit theory

Introduction
Organizing a small scale ad hoc network so that the streams
reach their destination while saving energy is an issue that
becomes increasingly important. However, in general wireless
networks power/rate optimisation is a complex and non con-
vex problem. First solutions were assuming somewhat unre-
alistic assumptions, such as high SNR regime (which is hardly
the case in such situations as expanding the coverage of a cell
by user cooperation), or non interfering channels (which re-
sults in a waste of resources) in order to make the problem
convex. Under these assumptions a centralised approach has
been proposed by O’Neill, Julian and Boyd in [3]. This type
of analysis is well suited to "small interference" cases such
as the use of CDMA techniques that ensure low interference
by orthogonality properties. In this paper we address a high
interference situation, when interference between streams is
allowed and appropriately addressed. We first describe the
simple transmission scheme under study in section 1. The
problem of power optimisation for a fixed transmission rate
is stated and appears to be highly non-convex (section 2).
Our analysis leads to rate asymptotical results presented in
part 3. Finally, we propose an optimisation algorithm that

has been observed to avoid non-convexity in many circum-
stances (section 4).

1. MODELING THE PROBLEM

Assume many wireless devices randomly distributed in a
given area. Two of them want to communicate with a global
rate R. All these devices can collaborate in order to achieve
this objective, but they want to globally use the smallest
possible power. The problem is to find the best solution in
terms of multi-hop and multi-route to achieve this result. All
devices are assumed to use the same spectrum, but for the
fact that transmission and reception must occur on different
time or frequency. Under these assumptions, every transmis-
sion between nodes interferes with the other ones and this
has to be carefully taken into account. Also, if we assume
that the nodes would like to use the smallest power, it is
likely that we will not be in the high SNR regime.

1.1. Network graph model

There is an immediate issue if sharing spectrum is imposed
for an ad hoc network: a node has to be able to relay, but
reception and transmission are not really feasible on the same
channel at the same time. So, even if the nodes want to share
the bandwidth, ad hoc networks need at least two channels.
This means that the set of nodes is divided into two sub-
sets: nodes which transmit on channel one (subset 1), and
nodes which transmit on channel two (subset 2). Two nodes
cannot communicate directly if they are in the same set. The
problem addressed in this paper (even if suboptimal) is power
minimization with a priori given subsets.
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Fig. 1. Ad hoc network link graph example
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Let (G, ζ) , be the graph representing the above described
system. G is the set of wireless nodes (with |G| = N) and ζ
the set of edge represents the potential wireless links (with
|ζ| = 2l). We note Pk the power dedicated to the link repre-
sented by the edge indexed by k and use the same notation
for the rate Rζ

k. We write in this paper k ∈ ζ to design the
indices corresponding to the edge in ζ. Also, considering a
relaying node cannot create data, it cannot transmit more
than it receives. On the opposite, if it emits fewer data than
received, there is clearly a loss and the power used to bring
these data would be wasted. Therefore, this cannot corre-
spond to an optimal solution. These considerations lead to a
data conservation equation (like Kirchhoff law for current).

1.2. Transmission model

This description is implicitly based on multiuser transmission
techniques, because there is a power assigned to each edge
(in other words, the power assigned to some node is shared
between all the corresponding destinations). For the sake of
simplicity, in a first step, we use the Bit Interleaved Coded
Modulation (BICM) coding strategy as depicted on figure 2.
Each user receives:
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Fig. 2. Coding strategy

∀k ∈ ζ, Yk =
√

GkkXk +
∑
i∈ζ
i�=k

√
GikXi + N (1)

where
√

Gij is the gain from the interfering link i to the in-
terfered link j. Each receiver is assumed to know only its own
interleaving function and the interleavers make the statisti-
cal properties of interfering signal gaussian. This is clearly
not really efficient, and can even be seen as the worst case
if we do not assume any knowledge about the interferers.
Finally, we suppose the channel coding is perfect and can
transmit at capacity rate without any error for an infinite
stream. With these assumptions, we obtain an achievable
region based on the Shannon capacity when decoding Yk =
√

GkkXk +
(∑

i∈ζ
i�=k

√
GikXi + N

)
and considering the inter-

ference as gaussian. A more efficient scheme can be obtained
by assuming that the receiver knows all interleavers and is
able to do Successive Interference Cancellation (SIC), so that
we can use some kind of interfering MAC and Broadcast chan-
nel in this general network. The best coding/decoding (or
interference cancellation) strategy to be used in this context
is an open problem. In this paper we want to keep a general
formulation, and the capacity is evaluated as follows:

∀k ∈ ζ, Rζ
k ≤ log (1 + γk) (2)

with γk = Pk.Gk∑
i∈ζ
i�=k

Θi,k.Pi.Gi,k

and where matrix Θ is able to

model several possible coding/decoding strategies. Obviously
both strategies mentioned above can be cast in this model.
We also use matrix Θ to model channel independence. On fig-
ure 1 the graph contains links that are independent (subsets
1 and 2 ) during the transmission process, since they corre-
spond to two different channels. However, the transmission
obviously makes use of both channels, and the routing prob-
lem must take this separation into account. Matrix Θ is also
used to model this independence. In practice it means if i ∈ ζ
and j ∈ ζ are not in the same subset, then Θij = Θji = 0.

1.3. Formulation of the optimisation problem

Here we present a first formulation of the optimization prob-
lem deriving directly from the considerations above. This
will be modified later based on properties of the problem.
For i ∈ ζ, we note pred(i) ∈ G the index of the node which
is at the origin of link i. Similarly, succ(i) ∈ G denotes the
index of the node which is the output of link i.

Problem 1.

min
(P,Rζ)∈R

2l
+ ∗R2l

+

‖P‖1 subject to (3)

∀k ∈ ζ, Rζ
k ≤ log

(
1 + Pk.Gk

σ2 + Ik

)
(4)

with Ik =
∑

m∈ζ,m�=k

Θm,k.Pm.Gm,k

∀N ∈ G,
∑
k∈ζ

pred(k)=N

Rζ
k −

∑
m∈ζ

succ(m)=N

Rζ
m =

⎧⎨
⎩

R if N = Source

−R if N = Sink

0 elsewhere

(5)

This optimisation problem admits (P, Rζ) ∈ R
2l
+ ∗ R

2l
+ as

variables, which are dependant. We have chosen to express
the problem in terms of variables Rζ , from which P is de-
termined. However, as illustrated below, such a P does not
always exist. A Rζ is said to be feasible if there exists P ≥ 0
such that (P, Rζ) satisfies the constraints of the problem (i.e.
eq. (4) and (5)). The characterization of Rζ meeting (4) is
studied in section 2.1 while section 2.2 is concerned with the
"Kirchhoff laws" and the global rate constraint. Such a Rζ

is said in this paper to be admissible. To summarize, if a
Rζ is admissible and feasible, then there exists P ≥ 0 such
that (P, Rζ) is a solution of the problem 1.

2. REFORMULATING THE PROBLEM

In this section, we decrease the number of unknowns and
demonstrate some properties of the constraints.
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2.1. The capacity constraint

We assume a fixed Rζ ∈ R
2l
+ . We are interested in finding the

corresponding power allocation meeting the constraints (4),

∀k ∈ ζ, Rζ
k ≤ log

(
1 + Pk.Gk

σ2 + Ik

)
Ik =

∑
m∈ζ,m�=k

Θm,k.Pm.Gm,k

Claim 1. Let Rζ ∈ R
2l
+ , arg

(
minP∈R

2l
+

‖P‖1

)
saturates the

set of constraints (4)

The precise proof is omitted due to lack of space. Since
the rate constraints are saturated, one can see that the prob-
lem can be written either in terms of the powers or equiv-
alently in terms of the rates. We choose to work with rate
as optimisation variable. Hence for a given rate vector, the
power vector is determined (provided that it corresponds to
positive values, this is addressed below). Eq. (4) thus needs
to be reformulated in terms of Rζ .

∀k ∈ ζ, RE
k = log

(
1 + Pk.Gk

σ2 + Ik

)
(6)

,
(

2R
ζ
k − 1

) (
σ2 +

∑
m∈ζ,m�=k

Θm,k.Pm.Gm,k

)
= Pk.Gk

and in matrix notation,

A(Rζ).P = B(Rζ) (7)

with A =⎡
⎢⎢⎢⎢⎢⎢⎣

G1,1 −
(

2R
ζ
1 − 1

)
Θ1,2.G1,2 · · ·

−
(

2R
ζ
2 − 1

)
Θ2,1.G2,1 G2,2 · · ·

−
(

2R
ζ
3 − 1

)
Θ3,1.G3,1 −

(
2R

ζ
3 − 1

)
Θ3,2.G3,2 · · ·

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦
(8)

B =

⎡
⎢⎢⎢⎣

(
2R

ζ
1 − 1

)
.σ2(

2R
ζ
2 − 1

)
.σ2

...

⎤
⎥⎥⎥⎦ (9)

Corollary 1. Let Rζ an admissible rate vector. Rζ is also
feasible if and only if ∃P ≥ 0, A(Rζ).P = B(Rζ)

Proof. ⇐ It is immediate, if ∃P ≥ 0, A(Rζ).P = B(Rζ),
there exist P satisfying the constraints (4), so (Rζ , P) satis-
fies all the problem constraints so Rζ is feasible.

⇒ If Rζ is admissible and feasible by definition there
exist P such as (Rζ , P) satisfies all the constraints and the
claim 1 assure that at least one P associated to Rζ satisfy
A(Rζ).P = B(Rζ)

This corollary is important because such a P does not
always exist and in this case there is no admissible solution,
which makes the minimisation problem difficult to solve: the

feasible set can be non connex. In such cases there is no power
(even very large) which will allow to realize the corresponding
rate allocations in the graph. From now on, matrix A is
assumed non-singular for all rate we consider. This is not
true in general but it can be proved that this assumption
is met within the explored area. The problem can now be
written as

Problem 2.

min
Rζ∈R

2l
+

‖A−1(Rζ)B(Rζ)‖1 verifying the set of constraints (5)

2.2. The routing constraint

This section addresses a characterization of the set of con-
straint (5) expressing that, except at the source and sink
nodes, no information can be created or lost. This set of
equations is similar to that obtained in circuit theory, de-
noted as the Kirchhoff law of current, but for the fact that
the quantities should be positive. Therefore, finding such Rζ

is very close to an already solved problem of circuit theory
[1]. This connection is important in that it provides practical
ways of reducing the number of unknowns thanks to the set
of linear equations (5) while ensuring that the corresponding
rates remain positive. Due to lack of space, this cannot be
detailed here, but we provide the main tool.

Theorem 1. In an oriented graph, all current vectors satis-
fying the Kirchhoff law of current can be generated by currents
freely chosen on a co-tree of the graph. For a determined co-
tree, denoting RE

cT the current vector associated to the co-tree,
there exists a matrix M ∈ Ml,l−N+2 whose all elements are
in {−1, 0, 1} such that: RE = M.RE

cT .
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Fig. 3. Graph used for routing constraint. The initial graph
(G, ζ) is associated to a graph (G, E) obtained by merging the dou-
ble edges and adding a virtual edge representing the global rate
constraint. In (G, E) the rate can be positive or negative so the
orientation of the element of E is arbitrary.

Corollary 2. The set of all admissible Rζ can be generated
using only l − N + 1 rate variables and the Kirchhoff laws
equations. These variables are denoted below as RE

free.

As a result of this section, we can reformulate the initial
problem as a non constrained one, with RE

free as variables,
that explicitly generate all admissible Rζ

min
RE

free
∈Rl−N−1

‖P((A−1B)(RE
free)‖1 (10)
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3. ASYMPTOTIC RESULTS

This section analyses the influence of the global rate on the
existence of a solution. Let Rζ = R.(rζ

1 , rζ
2 , · · · , rζ

2l) = R.rζ .
As with Rζ , we consider admissible and/or feasible rζ . A
first result is that, when R → 0, this implies high SINR, a
situation proved to be convex in [3]. Therefore, this always
correspond to a feasible situation. The next result is con-
cerned with the other extreme: when R →+ ∞. Lack of
space prevents us to provide the proof, but it can be shown
that for such large R, the only feasible solution is the direct
link between the transmitting node and the receiving node.
This shows the limit of sharing the same channel.

4. OPTIMISATION ALGORITHM

This section proposes an iterative algorithm for solving the
non convex optimization problem 2.2 which has been shown
to be equivalent to problem 1. We introduce here an inter-
mediate step in which the powers involved in the interfer-
ence term are considered as constant quantities. Let U =
diag(A(Rζ)) and V(Rζ) = U − A(Rζ), then eq. (7) reads

U. P︸︷︷︸
Variable

−V(Rζ). Pcst︸︷︷︸
Constant

= B(Rζ)

P̂ = U−1 (
B(Rζ) + V(Rζ).Pcst

)
(11)

where U is associated with the useful power and V with the
interference term. The minimisation problem

min
RE ∈Rl−N+1

P̂ = U−1 (
B(Rζ) + V(Rζ).Pcst

)
is a strictly convex optimisation problem. Now, a practical
scheme for solving (10) can be proposed.

Algorithm 1. 1. Choose an admissible Rζ [i] (initialisa-
tion on direct transmission point, always a solution )

2. Solving problem on that point P[i] = A(RE [i])−1.B(RE [i]).
3. We minimise power with fixed interference.

P̂[i + 1] = U−1.(V(RE [i]).P[i] + B(RE [i]))

RE [i + 1] = arg
(

min
RE ∈Rl−N−1

, ‖P̂[i + 1]‖1

)
(12)

4. increment i by 1 and go to 2

Each step of the minimisation problem is strictly convex
in terms of RE

free variables, hence has a unique solution. We
are not able to prove the convergence of Algorithm 1. How-
ever, we observed that, as long as the feasible domain is con-
vex, the algorithm seems to converge to a global minimum,
even when the path followed by the algorithm corresponds to
a local increase the total power (see figure 4 ) . The global
rate constraints in figure 4 is R = 1.3bits.s−1.Hz−1.

The plots in this document all correspond to the graph
presented in figure 1. We used Θ. ∗ G, where .∗ is the term
by term product, as provided below. This matrix corresponds
to the fully interfering strategy (no interference is canceled).
The line/column numbering corresponds to figure 1.
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Fig. 4. Avoiding non convexity
Algorithm convergence in the free rate space. We represent the
logarithm of the sum power as a function of two free link rate (link
5 and 6 see figure 3 ). The initial point is the direct transmission.
We note that this algorithm strictly increase the criterion from
iteration 0 to 2, and converge from 3 to 22 to the global minimum.

Conclusion
This paper addresses the problem of power and rate allocation
in ad hoc networks, in the low SINR regime, where convexity
of the criterion is a coarse approximation. A study of the
problem allows to change the initial problem, to an uncon-
strained one. An analysis of the resulting problem demon-
strates that if the rate to be transmitted is too high, coop-
eration will not improve over direct link. However, for rea-
sonable rate requirements, the problem will have solutions,
even under low SINR assumptions. We proposed an iterative
algorithm which has been observed to be able to converge
to the global optimum, even when initialized in the basin of
attraction of a local minimum. However, we do not have any
proof of convergence yet. Further work will be reported.
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