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ABSTRACT

We consider using the conjugate gradient (CG) algorithm to equal-
ize a time-varying channel in an orthogonal frequency division mul-
tiplexing (OFDM) system. Preconditioning technique to accelerate
the convergence of the CG algorithm is discussed, where we show
that when the Doppler spread becomes higher, the commonly used
diagonal preconditioner, despite its simpleness, can perform even
worse than without preconditioner. In such a case, a preconditioner
with a more complex structure is proposed.

Index Terms— OFDM, time-varying channel equalization, con-
jugate gradient, preconditioning

1. INTRODUCTION

High-speed data communications over dispersive channels demands
a low-complexity channel equalization method. One of the most
successful examples is orthogonal frequency division multiplexing
(OFDM), which gains most of its popularity thanks to its ability to
transmit signals on separate subcarriers without mutual interference,
a fact that mathematically can be represented in the frequency do-
main by a diagonal channel matrix. This property holds only when
the channel stays (almost) constant for at least one OFDM symbol
interval. In practice, a time-invariant channel assumption can be-
come invalid due to, e.g., Doppler effects resulting from the motion
between the transmitter and receiver. In such a case, the frequency-
domain channel matrix is not diagonal but in principle full with the
non-zero off-diagonal elements as known as inter-carrier interfer-
ence (ICI).

Equalizing such channels requires inverting a full matrix, which
is very costly. A commonly adopted approach is to approximate
the channel matrix as banded [1–3]. Indeed, for narrowband chan-
nels subject to realistic Doppler spreads, the ICI is for the most part
contributed by nearby subcarriers, implying that most channel en-
ergy is still concentrated on the entries close to the main diagonal.
With such a banded assumption, the complexity of equalization can
still be linear in the number of subcarriers as in time-invariant chan-
nel cases. Recently, [4] has proposed using the generalized minimal
residual (GMRES) and LSQR algorithms for channel equalization.
Just like the conjugate gradient (CG) algorithm [5] to be discussed
in this paper, these algorithms invert the channel matrix iteratively.
Note that the approximations generated by the CG algorithm belongs
to the Krylov subspace. As a result, for a system subject to additive
noise, a truncated CG can yield different results than direct matrix in-
version. It is well-known that the performance of direct matrix inver-

sion is limited by the condition number of the channel matrix, which
usually becomes larger with the increase of the Doppler spread. In
comparison, the performance of the CG algorithm turns out to be
less susceptible to this problem as we will show in the simulations.

On the other hand, the convergence rate of CG is dependent on
the condition number of the channel matrix, which can be acceler-
ated by the use of preconditioning [5]. A good preconditioner is
able to enforce the spectrum of the preconditioned channel matrix to
cluster around 1. At the same time, the design and implementation
of the preconditioner should be simple enough in order to maintain
the overall complexity low. [4] designed a circulant preconditioner
in the time domain, which is, however, suboptimal, and becomes less
effective as Doppler increases. Noting the equivalence between the
circulant and diagonal matrices via the discrete Fourier transform
(DFT), we design in this paper a diagonal preconditioner directly
in the frequency domain following the approach in [6]. However,
such a diagonal preconditioner does not necessarily lead to an im-
proved spectral property as claimed by [6], especially in the case
of a faster-varying channel, where the energy of the channel matrix
will become increasingly dispersed to entries farther away from the
main diagonal. At the point when the energy on the off-diagonals is
higher than the main diagonal, it turns out that a diagonal precondi-
tioner will cluster the eigenvalues around 0 instead of 1. In such a
case, it will be necessary to impose the preconditioner with a more
complex structure.

Notation: We use upper (lower) bold face letters to denote matri-
ces (column vectors). (·)∗, (·)T and (·)H represent conjugate, trans-
pose and complex conjugate transpose (Hermitian), respectively. [x]p
indicates the pth element of the vector x and [X]p,q indicates the
(p, q)th entry of the matrix X. diag{x} is used to denote a diagonal
matrix with x on the diagonal; � represents the Hadamard product.
IN stands for the N × N identity matrix and ek is reserved for the
kth column of IN ; 1M×N stands for an M ×N all-one matrix, and
WK for a K-point normalized DFT matrix. Finally, we use ‖X‖ (
‖x‖ ) to denote the Frobenius norm of the matrix X (vector x).

2. SYSTEM MODEL

Let us consider an OFDM system where the discrete-time channel
is assumed to be a time-varying causal finite impulse response (FIR)
filter with a maximum order L. Using hp,l to denote the time-domain
channel gain of the lth tap at the pth time instant, we assume that
hp,l = 0 if l < 0 or l > L. Note that this FIR channel model can
take transmit/receiver filter, propagation environment, and possible
synchronization errors into account.
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We use s[m] to represent the mth OFDM symbol, which con-
tains K data symbols. They are first modulated onto K subcarriers
by means of the inverse DFT (IDFT) matrix WH

K , then concatenated
by a cyclic prefix (CP) of length Lcp ≥ L, and finally sent over the
channel. At the receiver, the received samples corresponding to the
CP are discarded, and the remaining samples are demodulated by
means of the DFT matrix WK . Mathematically, we can express the
received samples during the mth OFDM symbol y[m] as

y[m] = HF[m]s[m] + z[m], (1)

where z[m] represents additive noise, and HF[m] denotes the chan-
nel matrix corresponding to the mth OFDM symbol in the frequency
domain, which is related to its time-domain counterpart HT[m] as
HF[m] = WKHT[m]WH

K . For the entries of HT[m], we have, un-
der the FIR assumption of the channel and letting Lcp = L without
loss of generality,

[
HT[m]

]
p,q

= hm(K+L)+p+L,mod(p−q,K) with

mod(a, b) standing for the remainder of a divided by b.
Many works approximate time-varying channel taps with a ba-

sis expansion model (BEM) (see e.g., [4, 7]). Although this ap-
proach is usually exploited for channel estimation, it will still be
useful to introduce the BEM here for the reason that will become
evident soon. One way of utilizing the BEM is to construct a K ×
(Q + 1) BEM matrix B := [b0, · · ·bQ] with bq being its qth col-
umn, which is also known as the qth expansion basis. With a suf-
ficiently large Q, the time-variation present in the lth channel tap
hl[m] := [hm(K+L), · · · , h(m+1)(K+L)−1]

T can be approximated
by the BEM as:

hl ≈ B[cl,0, · · · , cl,Q]T , (2)

with cl,q[m] denoting the qth BEM coefficient for the lth tap corre-
sponding to the mth OFDM symbol.

Because the channel equalization discussed in this paper will be
realized for each OFDM symbol individually, we will in the sequel
omit the symbol index [m] for the sake of notational ease.

3. LOW-COMPLEXITY EQUALIZATION

For time-varying channels, HF becomes full in general, and a di-
rect inversion enlists a cost of O(K3). We note that conform Jakes’
model [8], the time-variation of the channel causes a channel energy
dispersion from the diagonal onwards into the off-diagonals of HF,
whose amount is determined by the Doppler spread. With a realis-
tic Doppler, it is thus reasonable to assume that most of the channel
energy is concentrated on the entries of HF that are close to and on
the main diagonal, and decays fast on the entries farther away. For
this reason, many attempts focus on a banded approximation of HF

to reduce the equalizer complexity [1–3]. To be specific, we write
(1) as y = H̃Fs+ ε+ z, with

H̃F := TQ′ �HF (3)

where TQ′ denotes a K × K matrix with 1’s on its main diago-
nal, Q′/2 sub-diagonals and Q′/2 super-diagonals, and 0’s on its
remaining entries. The resulting banding error is captured in ε. With
a proper Q′ which is usually chosen to be no smaller than Q, it is
reasonable to neglect ε in the subsequent equalization.

Different than the direct matrix inversion approach adopted in
[2,3], we will use the conjugate gradient (CG) algorithm to invert HF

iteratively [5]. The solution obtained after the ith iteration, denoted
as ŝ{i}, is constrained in the Krylov subspace which is defined as
span{y,Hy, · · · ,Hi−1y}. This implies that the solution obtained
through iterative algorithms could be different from the solution ob-
tained through direct matrix inversion if y is subject to an additive

noise (as well as a banding error). The basic implementation of CG
is described in Table 1.

Step 1. Set i = 0, and initialize

g{0} = y,

a{0} = y,

u{0} = ‖g{0}‖2
a{0}THFa

{0} , and

ŝ{0} = u{0}a{0}.
Step 2. Increment i, and update the following

g{i} = y −HFb̂
{i−1}, (4)

a{i} = ‖g{i}‖2
‖g{i−1}‖2 a

{i−1‖ + g{i},

u{i} =
‖g{i}‖2

a{i}HHFa{i} , (5)

and

b̂{i} = b̂{i−1} + u{i}a{i}.
Step 3 If the stop criterion is met, then halt the
iteration. Otherwise, return to Step 2.

Table 1. The CG algorithm.

The stop criterion can be whether or not the discrepancy between
ŝ{i} and ŝ{i−1} drops below a given level. An alternative is to halt
after a predetermined number of iterations, a strategy that will be
used in the simulations.

It is clear from Table 1 that the computational complexity is de-
termined by (4) and (5). For instance, the operation a{i}HHFa

{i}

costs O(K2). This can be alleviated in two ways: 1) replace HF

by H̃F, which is introduced in (3) as a banded approximation to HF

having a bandwidth of Q′. As a result, the complexity is reduced
to O(KQ′) at the cost of inducing an approximation error. 2) It is
also possible to resort to the time domain and explore the equality
a{i}THFa

{i} = a{i}HWKHTW
H
Ka{i}. Seeing that WH

Ka{i} can
be achieved by means of the fast Fourier transform (FFT) at a cost of
O(K logK), and HT is a strictly banded matrix with a bandwidth
of L, this approach calls for a complexity of O(Kmax(L, logK)).
Obviously, this approach does not suffer from an banded approxima-
tion error, but can be more costly if max(L, logK) > Q′.

Simulation results show that with a proper preconditioning, the
CG algorithm converges already after a few iterations even for a very
large Doppler spread. As a result, we are still able to implement the
iterative channel equalization with a complexity linear in the number
of subcarrier K.

4. PRECONDITIONING

For the CG algorithm to converge faster, preconditioning is an in-
dispensable procedure. With a preconditioning matrix P, which is
non-singular by assumption, the I/O relationship given in (1) can be
rewritten as

y = HFPP−1s+ z. (6)

The estimate of s is attained in two steps: 1) x = (HFP)−1y is
computed by the CG algorithm, and afterwards 2) ŝ = Px. The pre-
conditioner P is designed to optimize the spectral condition of the
matrix product HFP. At the same time, its design and implementa-
tion should not inflict too much extra effort (otherwise, we can just
suffice with a straightforward preconditioner P = H−1

F ). For this
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reason, the preconditioner is often designed with some special struc-
ture.

One approach is to approximate the time-domain channel matrix
HT with a circulant matrix Λ, which was first proposed in [9]

Λ = arg min
Λ̂

‖HT − Λ̂‖2, (7)

leading to a preconditioner P = Λ−1. Note that [9] aims to find
a circulant matrix approximation to a Toeplitz matrix. In our case,
although HT is not Toeplitz, this method could still be valid for low
to moderate Doppler. For the design of Λ, we resort to the BEM
channel approximation introduced in (2), with which we have HT ≈∑Q

q=0 diag{bq}Cq , where Cq stands for a K ×K circulant matrix

with [c0,q, · · · , cL,q,01×(K−L−1)]
T as its first column. Further, we

introduce two vectors cq and δ such that diag{cq} := WKCqW
H
K

and diag{δ} := WKΛWH
K . Armed with these notations, we real-

ize that

‖HT − Λ̂‖2 = ‖WK

Q∑
q=0

diag{bq}CqW
H
K −WKΛ̂WH

K‖2,

= ‖
Q∑

q=0

WKdiag{bq}WH
Kdiag{cq} − diag{δ}‖2.

Obviously, the optimal δ that minimizes the above is
∑Q

q=0 βq�cq ,

where βq equals the diagonal of WKdiag{bq}WH
K . It is easy to

derive that βq = aq1K×1 with aq :=
∑K−1

k=0
[bq ]k

K
. As a result, we

obtain

Λ =

Q∑
q=0

aqCq. (8)

Note that [4] uses a preconditioner P = C−1
0 without giving a clear

motivation. Actually, only with a special critically-sampled complex
exponential BEM [(C)CE-BEM] assumption [7] for which

bq :=

{
1/K[1, · · · , e−j 2π

K
q(K−1)]T if 0 ≤ q ≤ Q/2,

1/K[1, · · · , ej 2π
K

(q− Q
2)

(K−1)
]T otherwise,

then it follows from (8) that Λ = C0 is a solution to (7). For other
BEM assumption, this solution is obviously not optimal.

The circulant preconditioner designed from (7) will become less
effective with increasing Doppler spread. Before we address this
problem, let us first look at another preconditioner design approach
proposed in [6] that seeks the preconditioner directly in the fre-
quency domain, and whose corresponding cost function is formu-
lated as

P = arg min
P̂

‖HFP̂− IK‖2. (9)

In the above, P is designed to make the eigenvalues of HFP clus-
tered around 1 such that its condition number is expected to be re-
duced. Obviously, the preconditioner derived from the above will
have a similar implementation complexity as (7) if we impose a di-
agonal structure on P. Equivalently, (9) can be reformulated as

p = arg min
p̂

‖HFdiag{p̂} − IK‖2, (10)

from which we can readily have

[p]k =
[HF]

∗
k,k

‖HFek‖2 . (11)

A drawback of (10) is that if more energy of HF is dispersed to the
off-diagonals, the resulting eigenvalues of HFdiag{p} will cluster
around 0 instead of 1 with the consequence that the condition num-
ber of the preconditioned channel matrix will increase rather than
decrease. To understand this effect, let us use ε21 to denote the low-
est upper-bound of the residual from (10) such that ‖HFek[p]k −
ek‖2 < ε21 holds for k = 0, · · · ,K−1. [6] shows that the eigenval-
ues of HFdiag{p}, denoted as σk, should satisfy

K−1∑
k=0

(1− σk)
2 ≤ Kε21,

which means that all σk should lie inside a disk of
√
Kε1 centered at

1. On the other hand, following the similar steps as in [6], we use ε0
to denote the smallest positive number such that ‖HFek[p]k‖2 < ε20
holds for k = 0, · · · ,K−1. Suppose UΣUH is a Schur decompo-
sition of HFdiag{p} where U is a unitary matrix, and the diagonal
of Σ equals [σ0, · · · , σK−1]

T . Then

K−1∑
k=0

σ2
k =

K−1∑
k=0

|[Σ]k,k|2 ≤ ‖Σ‖2 = ‖HFdiag{p}‖2 ≤ Kε20,

(12)
which implies that all σk’s at the same time lie inside a disk of ra-
dius

√
Kε0 centered at 0. Obviously, if ε0 < ε1, then minimizing

‖HFdiag{p} − IK‖2 will at the same time minimize the Frobenius
norm of HFdiag{p} itself, making the eigenvalues more clustered
around 0 rather than around 1. Note that with p obtained by (10),
we can show that

ε21 = max
k

|∑K−1
m=k[HF]m,k|2 − |[HF]k,k|2∑K−1

m=0 |[HF]m,k|2
, (13)

while

ε20 = max
k

|[HF]k,k|2∑K−1
m=0 |[HF]m,k|2

. (14)

Obviously, if

|[HF]k,k|2 <

K−1∑
m=0,m �=k

|[HF]m,k|2, for k = 0, · · · ,K − 1 , (15)

then a diagonal preconditioner will cluster the eigenvalues in a “wrong”
area. (15) implies that the sum of the off-diagonal power in each
column is higher than the power on the diagonal, which tends to be
more likely with the increase of the Doppler spread. In such cases,
a diagonal P is not sufficient, and a more complex structure will
be necessary. We mentioned before that the energy of time-varying
channels complying with Jakes’ model is usually concentrated on
the entries close to the main diagonal. Hence, t is reasonable to im-
pose a banded structure on P as well. Accordingly, we modify the
cost function (9) as follows

P = arg min
P̂

‖HFP̂− IK‖2, s.t. P̂ = TD � P̂ . (16)

where TD is introduced in (3) with the integer D being a design
parameter.

To illustrate the performance of the preconditioners, we plot in
Fig. 1 the eigenvalues of HF, and the eigenvalues resulting from a
diagonal preconditioner and from a tridiagonal preconditioner, re-
spectively. The channel is assumed to have a maximum normalized
Doppler spread of νD = c

f
vT = 0.5, where v denotes the vehicle

velocity, f the carrier frequency, T the OFDM symbol duration, and
c the speed of the propagation medium. Refer to Section 5 for more
details of the channel parameters.
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Fig. 1. Eigenvalues with and without a diagonal preconditioner.

5. SIMULATIONS AND DISCUSSIONS

In the following simulations, the time-varying channels are gener-
ated that conforms to Jakes’ Doppler profile [8] using the channel
generator given in [10]. We assume L+ 1 = 6 channel taps, which
are mutually uncorrelated with variance σ2

l = 1/
√
L+ 1, and con-

sider an OFDM system with 256 subcarriers. A quadrature phase-
shift keying (QPSK) symbol is modulated onto each subcarrier.

The CG algorithm assumes full channel knowledge, and is de-
signed to halt after 5 iterations. Next to the CG algorithm, we will
also compare the performance of a regularized least-squares (LS)
equalizer, which is similar to that considered in [2, 3] whose data
estimate ŝ is given by

ŝ = (HH
F HF + λIK)−1HH

F y,

where λ is known as the regularization parameter. For an ill-conditioned
HF, which is often the case with faster-varying channels, the pres-
ence of λ reduces the error floor especially for high SNR. In the
simulations, we examine both λ = 0.01 and λ = 0 (no regular-
ization). In order to further reduce the complexity, all the equaliz-
ers are based on a banded approximation of the true channel matrix
H̃F = TQ′ �HF with Q′ = 9.

Test Case 1. We first look at a relatively slow time-varying chan-
nel case with a normalized Doppler spread νD = 0.2. The BER vs.
SNR performance is plotted in Fig. 2. It is clear to see that the LS
equalizer without regularization suffers from a very high noise floor.
Further, the diagonally preconditioned CG algorithm outperforms
that without preconditioning, although it is still inferior to the LS
equalizer with proper regularization.

Test Case 2. For a highly time-varying channel case with a
normalized Doppler spread νD = 0.5, the BER vs. SNR perfor-
mance is plotted in Fig. 3 where we can see that the significance
of the regularization parameter λ to the LS equalizer is even more
pronounced. The CG algorithm with a diagonal preconditioner per-
forms obviously even worse than without preconditioning. When
equipped with a tridiagonal preconditioner, the CG algorithm out-
performs the LS equalizer.
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