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ABSTRACT

In this paper, a low complexity equalizer for single carrier

transmissions over doubly selective channels is developed.

The main attribute of the proposed equalizer is its low com-

plexity compared to the existing equalizers, which is attained

at the expense of a slight performance loss. Simulation results

show that the performance of our proposed low complexity

equalizer is as good as that of the conventional equalizers with

extensive computation complexity.

Index Terms— Equalizer, single carrier, doubly selective

channel.

1. INTRODUCTION

Recently, the demands for higher data rates have grown to

an unprecedented level. Frequency selective propagation

in channel is one of the major challenges in high data rate

transmission systems. Conventional single carrier (SC) trans-

missions system suffers from inter symbol interference (ISI),

which limits (or degrades) the system performance. On the

other hand, insertion of the cyclic prefix at the transmitter and

its removal at the receiver can mitigate the effects of ISI as in

OFDM systems.

OFDM systems have been adopted in many wireless stan-

dards such as IEEE 802.11a/g, digital video broadcasting

(DVB) and WiMAX due to its robustness against frequency

selective channels. For time invariant channels, a compu-

tationally efficient single tap equalizer in frequency domain

is sufficient for OFDM. However, OFDM transmits signals

after IFFT and CP insertion and thereby exhibit high peak to

average power ratio (PAPR). To process high PAPR signals

properly, transmitters need to be equipped with good power

amplifiers, which are relatively expensive. This drawback of

OFDM systems motivates the adoption of the SC transmis-

sions with CP in high data rate transmissions.

To achieve the transmission with low PAPR, the SC trans-

missions with CP, transmits the time domain signals after

(CP) insertion [1]. In general, the computational complex-

ities of the transmitters used for SC transmissions with CP

are relatively lower than the complexities of OFDM trans-

mitters. Thus SC transmissions with CP are suitable for

uplink transmissions. Typical examples of the SC transmis-

sions with CP are SC Frequency Division Multiple Access

(FDMA), utilized for uplink in Long Term Evolution (LTE),

and SC-OFDM.

For the fast moving mobile terminals, where the channel

is time varying, to obtain sufficient performance of transmis-

sions over time and frequency (doubly) selective channels, so-

phisticated equalizers at the receiver are necessary.

The channel between the transmitted block and the re-

ceived block after CP removal can be described by a channel

matrix. In general, O(N3) computations are required to invert

a matrix of size N . Thus, without any modification, zero forc-

ing (ZF) and minimum mean squared error (MMSE) equaliz-

ers of transmissions with CP have a complexity of O(N3).
Fortunately, the channel matrix of a doubly selective channel

is “pseudo-circulant”, which enables us to develop equalizers

with low complexities.

Due to IFFT at the transmitter and FFT at the receiver in

OFDM systems, the composite channel over a doubly selec-

tive channel can be approximated as a circularly banded ma-

trix [2, 3]. A linear equalization with O(B2N) computations

has been proposed in [2], where B is the upper and the lower

bandwidth of the banded matrix. An iterative soft equaliza-

tion with O(B2N) computations per iteration has been pre-

sented in [3] by utilizing the banded approximation.

Since SC transmissions with CP and OFDM are dual, the

equalizers developed for OFDM can be modified for SC trans-

missions with CP as in [4]. But, in general, additional compu-

tations are necessary to construct the equalizers for SC trans-

missions. In [5], low complexity iterative equalizations have

been developed based on basis expansion models (BEM) for

channels [6]. However, the disadvantages induced by the iter-

ative algorithms still persist.

Here, we study SC transmission with CP and develop a

non-iterative equalization requiring only O(5N log2 N) com-

putations. Our equalizer is an approximate version of the par-

allel FFT equalizer proposed in [7] that has the complexity

of O(2N2 log2 N). The major reduction of complexity is

achieved by using linearly interpolated channel coefficients

and some approximations at the expense of a slight perfor-

mance loss. Numerical simulations are provided to show that

for a practical range of Doppler frequency, our equalizer ex-

hibits a comparable performance to ZF equalizer with much

less complexity.
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2. TRANSMISSIONS OVER DOUBLY-SELECTIVE
CHANNELS AND EQUALIZATION

Let us consider single carrier transmissions over time and fre-

quency (doubly) selective channels. We assume that the con-

tinuous received signal is sampled at the information sym-

bol transmission rate and that the maximum length of the

discrete-time baseband equivalent channel is given by L.

Without loss of generality, the equivalent discrete-time

baseband description of the ith received sample y(i) can be

expressed as [6]

y(i) =

L∑
l=0

h(i; l)u(i− l) + w(i), l ∈ [0, L], (1)

where h(i; l) denotes the lth channel tap at time i, u(i) the

transmitted sample at time i and w(i) the additive white Gaus-

sian noise (AWGN) with zero mean and variance σ2
w.

To mitigate the inter symbol interference (ISI), we utilize

cyclic prefix (CP), which is adopted in many systems e.g.,

Orthogonal Frequency Division Multiplexing (OFDM), sin-

gle carrier (SC-) OFDM, and SC Frequency Division Multi-

ple Access (FDMA).

In OFDM, prior to CP insertion, inverse fast Fourier trans-

form (IFFT) is performed on the serial data sequence to con-

vert it to slow parallel data. On the other hand, in SC-OFDM

and SC-FDMA, CP is inserted into the serial data sequence

but the serial data sequence is not modulated by IFFT at the

transmitter, which enables transmissions with low peak-to-

average power ratio (PAPR) as compared to OFDM [1].

Due to the presence of CP, OFDM, CP-OFDM and SC-

FDMA fall in block transmissions. Let us assume that the

length Ncp of CP satisfies Ncp ≥ L. This means that there

are no inter block interferences (IBI) between data blocks.

We denote N̄ = N + Ncp, where N is the block size. For

simplicity of presentation, let us assume that N is a power of

2.

For clarity of exposition, we use two arguments n and m
to describe the serial index i = mN̄ +n for n ∈ [−Ncp, N −
1], where n is the index inside a block and m is the block

index . We collect samples {y(i)} into N × 1 vectors defined

as

y(m) = [y(m)(0), · · · , y(m)(N − 1)]T (2)

where the (n + 1)st entry of the mth block of the received

signal in the time domain is denoted as y(m)(n) = y(mN̄+n)
and its corresponding channel coefficient

h(m)(n; l) := h(mN̄ + n; l). (3)

Similarly, the transmitted signal u(i) and the noise w(i) are

expressed as u(m) = [u(m)(0), · · · , u(m)(N − 1)]T and

w(m) = [w(m)(0), · · · , w(m)(N − 1)]T respectively.

After the removal of the received portion corresponding

to CP at the receiver, (1) can be rewritten as

y(m) = H(m)u(m) +w(m), (4)

where H(m) is an N × N “pseudo-circulant” matrix com-

posed of the channel coefficients as

H(m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(m)(0; 0) 0 h(m)(0;L)· · · h(m)(0; 1)
. . .

. . .
. . .

...
...

. . . h(m)(L− 1;L)

h(m)(L;L)
. . .

. . .

. . .
. . . 0

0 h(m)(N − 1;L) · · · h(m)(N − 1; 0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(5)

If the channel coefficients in (4) are time-invariant within

a block, i.e., block-constant fading, H(m) becomes circulant.

Since circulant H(m) can be diagonalized by FFT and IFFT

matrices, computationally efficient one-tap frequency domain

equalization for OFDM works well when the channel state

information (CSI) is available.

Similarly, thanks to the diagonalization, zero forcing (ZF)

equalization for SC transmissions requires only O(2N log2 N)
computations (complex multiplications and additions), while

the direct computation of the inverse of H(m) consumes

O(N3) computations. However, channels are often time-

varying due to relative motion between the transmitter and

the receiver. The change of channels degrades performances

of ZF equalizers.

In OFDM, the composite channel between the data vector

and the received vector after FFT is given by FH(m)FH. For

doubly selective channels, FH(m)FH is well approximated

as a (circularly) banded matrix [2, 3]. It has been shown in

[2] that using fast LDU decomposition of the banded matrix,

an (approximate) MMSE equalization can be performed by

O(B2N) computations, where B is the upper and the lower

bandwidth of the banded matrix. An iterative soft equaliza-

tion with O(B2N) computations per iteration has been also

developed in [3].

The equalizers developed for OFDM using the banded ap-

proximation can be modified to apply to SC transmissions us-

ing CP. Although the equalizers may have low computational

complexity, additional O(2N2 log2 N) computations are re-

quired to construct an equalizer for SC transmissions, since

they utilize the values of entries of FH(m)FH. Iterative

equalizations without computations FH(m)FH have been

proposed in [5] based on basis expansion models (BEM) for

channels [6]. Each iteration of the iterative algorithm has a

small complexity of O(BN log2 N) but it also inherits disad-

vantages of iterative methods.

In this paper, we deal with SC transmission with CP, fo-

cusing on SC-OFDM, and develop a non-iterative equalizer

that requires only O(5N log2 N) computations. The low

complexity is achieved at the expense of performance loss

due to approximation. Since we process the received vector

block-wise, we omit the block index (·)(m) in the following.
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3. LOW COMPLEXITY EQUALIZATION USING
LINEAR APPROXIMATION

Let us introduce the parallel FFT equalization [7], based on

which our equalizer will be developed.

Define the DFT of the channel at time i and frequency

2πk/N as

Hk(n) =
L−1∑
l=0

h(n; l)e−j 2πkl
N (6)

and denote the (n + 1)st row of FFT matrix F as fn. Then,

the output of the parallel FFT equalizer for u(n) is given by

fnD
−1
n FHy (7)

where Dn is a diagonal matrix whose diagonal entries are the

DFT of the channel at time n defined as

Dn = diag (H0(n), . . . , HN−1(n)) . (8)

It has been shown in [7] by numerical simulations that the

parallel FFT equalizer exhibits good performance. However,

since O(2N log2 N) computations are required to equalize

each u(n) for n = 0, 1, . . . , N − 1, at least O(2N2 log2 N)
computations are required in total. To reduce the computa-

tional complexity, we exploit the linear interpolation of chan-

nel coefficients as follows.

Suppose that {h(0; l), h(N − 1; l)}l=0,...,L are available.

Let us assume that each channel coefficient can be described

by

h(n; l) = h(0; l) + nΔhl (9)

where Δhl is the unit of the variation given by

Δhl =
h(N − 1; l)− h(0; l)

N − 1
. (10)

This means that channel coefficients h(n; l) for n ∈ [1, N −
2] can be obtained by the linear interpolation of h(0; l) and

h(N−1; l). Actually, (9) approximately holds true for slowly

changing channels.

Taking DFT of both sides of (9) with respect to l results

in

Hk(n) = Hk(0) + nΔHk (11)

where

ΔHk =
L−1∑
l=0

Δhle
−j 2πkl

N (12)

If ΔHk is small enough, then we can approximate

H−1
k (n) as

1

Hk(n)
=

1

Hk(0) + nΔHk
≈ 1

Hk(0)

(
1− n

ΔHk

Hk(0)

)
.

(13)

Substituting the R.H.S. of (13) into D−1
n , one can express

fnD
−1
n F in (7) as

fn

(
D−1

0 − nΔ
)
FH (14)

where

Δ = diag

(
ΔH0

H2
0 (0)

,
ΔH1

H2
1 (0)

. . . ,
ΔHN−1

H2
N−1(0)

)
(15)

Thus, the output of the parallel FFT equalizer for u(n) is ap-

proximately given by

û(n) = fn

(
D−1

0 − nΔ
)
FHy (16)

= fnD
−1
0 FHy − nfnΔFHy. (17)

Let us define the ZF equalizer for the channel at time 0 as

E = FD−1
0 FH (18)

and an auxiliary matrix ΔE as

ΔE = FΔFH. (19)

If the channel is not time-varying, then the ZF equalized re-

ceived vector is given by

ŷ0 = Ey. (20)

For the time-varying channel, we compute a bias vector de-

fined as

ŷb = ΔEy. (21)

Then, û(n) is given by

û(n) = [ŷ0]n+1 − n[ŷb]n+1 (22)

where [a]m is the mth entry of the vector a.

Now let us evaluate computational complexity of our

equalization method, assuming that the channel coefficients

{h(0; l), h(N − 1; l)}l=0,...,L are given.

We can obtain {Δhl} in (10) with O(L) multiplica-

tions and additions. Then, two FFT are utilized to compute

{Hn(0)}n=0,...,N−1 and {ΔHk}k=0,...,N−1. We take the

inverse of D0 with O(N) multiplications. Similarly, Δ with

O(2N) multiplications.

One IFFT is performed to obtain

ỹ = FHy (23)

then, ŷ0 = F (Δỹ) is given by one FFT after multiplication

of the N × N diagonal matrix Δ and the vector ỹ of size

N , which requires O(2N log2 N + N) multiplications and

additions in total.

Similarly, ŷb is obtained by O(N log2 N + N) multipli-

cations and additions. Finally, û(n) in (22) is computed with

O(N) multiplications and additions.

In summary, our equalization requires O(5N log2 N +
3N) multiplications and additions, which is quite smaller

than O(2N2 log2 N) for equalizers in [2, 7] and is com-

parable with the multiplications and additions of just one

iterations of the iterative equalizer [5].
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Fig. 1. Averaged BER of the proposed (with ×), ZF (with ∗),

and the parallel FFT (with ◦) equalizer at f̄D = 10−4.

4. SIMULATION RESULTS

We compare our equalizer with ZF equalizer and the parallel

FFT equalizer [7]. It should be noted that for the same CSI,

the BER of ZF equalizer is the performance limit of corre-

sponding equalizers in [2, 5]. In the simulations, each trans-

mitted vector has N = 64 and the length of the cyclic prefix

is Ncp = 16. The average BER of QPSK symbols are com-

puted by averaging the results for 5 · 105 Rayleigh channels

with 10 complex zero-mean Gaussian taps of identical power

profile, where channel taps are independent of each other and

fade according to the Jakes fading model [8].

Using pilot symbols having the same power as informa-

tion symbols, we estimate {h(0; l), h(N − 1; l)}l=0,...,L as

detailed in [1] and linearly interpolate them as in (9) to esti-

mate h(n; l) for n ∈ [1, N − 2]. The same estimates are used

to construct three equalizers.

Fig. 1 shows BERs of three equalizers at the normalized

Doppler frequency f̄D = 10−4, where f̄D is defined as the

maximum Doppler frequency divided by the sampling fre-

quency fs. If fs = 107, i.e., the bandwidth of our transmis-

sion is about 10 MHz, and the carrier frequency is assigned

as 5GHz, then f̄D = 10−4 corresponds to mobile terminal’s

velocity v = 216km/h.

Our equalizer exhibits slightly worse performance than

other equalizers. This is due to the approximation, which en-

ables a large reduction of the computations. It should be re-

marked that the BERs of three equalizers may be enhanced by

optimizing power allocation between pilot and data symbols

and by resorting to iterative channel estimation and equaliza-

tion, but is beyond the scope of this paper.

For different f̄D. Fig. (2) depicts BERs at a fixed SNR

Eb/N0 = 20dB. For the practical range of f̄D, our equalizer

attains comparable performance with other equalizers.

Fig. 2. Averaged BER of the proposed (with ×), ZF (with ∗),

and the parallel FFT (with ◦) equalizer at 20dB.
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