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ABSTRACT
In this paper novel subspace-based blind schemes are pro-

posed and applied to the sparse channel identification prob-

lem. Moreover, adaptive sparse subspace tracking methods

are proposed so as to provide efficient real-time implemen-

tations. The new algorithms exploit the subspace sparsity

either via employing �1-norm relaxation or through greedy-

based optimization. The derived schemes have been tested

in a Zero-Prefix Orthogonal Frequency Division Multiplexing

(ZP-OFDM) system and it turns out that, compared to state-

of-art existing schemes, they offer improved performance in

terms of convergence rate and steady-state error.

1. INTRODUCTION

The channel estimation task is an important constituent part

of the OFDM-based systems. It is often the case that in high-

speed wireless communications, the involved multipath chan-

nels are typically sparse, i.e., they are characterized by a long

Channel Impulse Response (CIR) having only a few dominant

components. In the recent literature of system identification,

there is a growing interest in exploiting such sparse character-

istics. Two major approaches to sparse system identification

are �1-minimization (basis pursuit methods), and greedy al-

gorithms (matching pursuit methods). Basis pursuit methods

solve a �1 constrained convex minimization problem. Greedy

algorithms, on the other hand, compute iteratively the signal’s

support set until a halting condition is met [1].

Traditionally, channel estimation is achieved by sending

training sequences through the channel. However, when the

channel is varying, even slowly, the training sequence needs

to be sent periodically, so as to update the channel estimates.

Hence, the transmission efficiency is reduced. The increas-

ing demand for high-bit-rate digital mobile communications

makes blind channel identification very attractive. During the

past years various blind identification approaches have been

proposed either by exploiting the cyclostationarity present in

Cyclic Prefix OFDM (CP-OFDM) [2] or by subspace-based

estimation techniques [3]-[4].

New channel estimation techniques appeared recently in

literature which properly exploit the involved channel sparsity

[5], however, the majority of these techniques are training-

based. In this paper, we derive sparse channel estimation tech-

niques for ZP-OFDM systems which can operate blindly, i.e.,

without requiring any pilot tones. Moreover, starting from [4],

we develop new subspace tracking methods, that exploit the

sparsity of the eigenvectors, and lead to adaptive implementa-

tions of the new blind channel estimation techniques. To the

best of our knowledge, this is the first time that the adaptive

subspace tracking problem is studied in a sparse context.

We follow two different approaches in order to solve the

underlying sparse subspace problem and then identify the

non-negligible CIR taps. The first approach is based on �1-

norm relaxation while the other one on a greedy optimization

strategy. Compared to the non-sparsity aware blind adaptive

channel estimation schemes, both sparse approaches exhibit

faster convergence and improved tracking capabilities.

The rest of the paper is organized as follows: In Section 2,

the problem is formulated and some preliminaries concerning

greedy and �1 relaxation methods are provided. In Section 3,

the new adaptive schemes are derived. Simulation results are

presented in Section 4. Finally, Section 5 concludes the paper.

2. SYSTEM MODEL - PROBLEM FORMULATION

Let us consider a baseband discrete time ZP-OFDM trans-

mission scheme in which the length N , n-th symbol block

sn = [sn(1), . . . , sn(N)] is modulated by the Inverse Dis-

crete Fourier Transform (IDFT) and then is padded with L

zeros. The (N +L)× 1 transmitted block may be written as:

xn =

[
FH

0L×N

]
sn (1)

The transmitted signal propagates through a multipath AWGN

channel with CIR h = [h0 h1 h2 . . . hL]
T

. From the (L+ 1)

CIR coefficients1 only S are assumed to be non-negligible,

located at the positions k1, · · · kS .

In the following, we assume that the receiver is synchro-

nized with the transmitter and also a perfect carrier recovery is

achieved, which implies that no intercarrier interference (ICI)

is introduced. In case a ZP is employed, the n-th received

data block yn of length N + L can be expressed as

yn = Hxn + zn, (2)

where H is the (N + L)×N convolution matrix of filter h.

1Since a ZP of length L is used, it is assumed that the channel has a finite

impulse response of length at most equal to L+1.
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2.1. Subspace Based Identification

In a blind identification procedure, the (L + 1) × 1 channel

vector is solely estimated from the observations of yn. As in

the method of Tong et al. [3] the identification is based on the

(N +L)× (N +L) autocorrelation matrix R of the received

data vector yn of eq.(2). Assuming that the elements of sn
are i.i.d. and of unit norm, and using the orthonormality of

the IDFT matrix F we can easily get that

R = E
[
yny

H
n

]
= HHH + σ2IN+L (3)

2.1.1. Subspace Decomposition

The Singular Value Decomposition (SVD) of matrix R is

R = [Us Uz]

[
Λs + σ2IN 0

0 σ2IL

]
[Us Uz]

H
(4)

where Us,Uz form a basis of the signal and noise subspace,

respectively, and the N ×N diagonal matrix Λs contains the

corresponding N largest eigenvalues of R.

2.1.2. Channel Identification

Before proceeding note that the columns of H span the signal

subspace. Thus, for every (N +L)× 1 noise subspace vector

vi, i = 1, . . . , L we have vH
i H = 0L or equivalently

hTV∗
i = 0L, 1 ≤ i ≤ L (5)

where Vi is a (L+ 1)×N Hankel matrix, constructed by the

elements of vector vi as follows:

Vi =

⎡
⎢⎢⎢⎣

vi(1) vi(2) . . . vi(N)
vi(2) vi(3) . . . vi(N + 1)

...
...

...

vi(L+ 1) vi(L+ 2) vi(N + L)

⎤
⎥⎥⎥⎦ (6)

Under appropriate conditions detailed in [6], the noise sub-

space related matrix Vi determines uniquely the channel co-

efficients up to a multiplicative constant. Thus, the unknown

CIR is the solution of the following minimization problem

min
h

Jw(h) ≡ min
h

hHWh, s.t. ‖h‖l2 = 1 (7)

where W =
∑L

i=1 ViV
H
i . Alternatively, it can be seen that

the unknown channel h may be estimated via the signal sub-

space as well. However, here we adopt a noise subspace-

based method since, as shown in [4], it may lead to CIR es-

timation by relying only on one noise eigenvector. On the

other hand, a signal subspace-based method requires knowl-

edge of all N associated eigenvectors, hence it is impractical

for real-time implementations.

Once W is computed, the normalized channel impulse

response hb can be obtained as the singular vector of W’s

smallest singular value. The estimated CIR is the unique (up

to a scalar factor α) vector h, i.e.,

h = αhb (8)

2.2. Identification of Sparce CIR’s

Recall that h ∈ C
L+1 is the S-sparse CIR vector, with S =

|supp(h)| << L+ 1 the sparsity order of the support set. In

order to exploit the CIR filter’s sparsity, we formulate the sub-

space problem of (7) as the constrained optimization problem

min
h

Jw(h) s. t. ‖h‖�0 ≤ δ, ‖h‖�2 = 1, (9)

meaning that we seek the support set of the CIR (for a prede-

fined tolerance δ) that minimizes eq.(7).

Since finding the optimal solution for this problem is

not computationally feasible, two common sub-optimal ap-

proaches have been proposed in literature, the l1-norm re-

laxation and the greedy optimization strategies. In the first

approach the �0-norm is replaced by the �1-norm, thus form-

ing a tractable problem with a global minimum, i.e.,

min
h

Jw(h) s. t. ‖h‖�1 ≤ δ, ‖h‖�2 = 1. (10)

In the second approach we cast a heuristic iterative algorithm

so as to find recursively the support set Ω of h such that

minhΩ(t)
JwΩ(t)

(hΩ(t)), s.t. ‖hΩ(t)‖�2
=1,h|Ωc(t)=0L−S , (11)

where Ωc(t) is the complementary to Ω(t) set, at iteration t.

3. BLIND ADAPTIVE SPARSE CHANNEL
IDENTIFICATION

We initially give a brief description of the adaptive subspace

estimation of matrices Rn and Wn which are the estimates of

matrices R and W, respectively, based on the received sam-

ples up to time n. The direct computation of these subspace

problems requires the SVD of the involved matrices. This

is a very costly task to be implemented in an adaptive fash-

ion. Adaptive subspace-based tracking schemes have been

proposed in literature to reduce computational costs. In this

paper, we adopt the approach of [4], which is based on the

well-known Data Projection Method (DPM) algorithm [7], in

order to estimate the noise subspace of matrix Rn. According

to the DPM algorithm, the noise subspace Un of a matrix An

can be tracked via the following updating relation

Un = orth
{
Un−1 − μ

tr(An)
AnUn−1

}
(12)

where μ is a properly selected step-size parameter and

orth{·} stands for an orthonormalization procedure (e.g.,

Gram-Schmidt). Thus, in the adaptive subspace tracking sce-

nario, eq.(12) is firstly applied to compute the noise subspace

of matrix Rn and then the first noise eigenvector of matrix

Wn is computed by the same equation. Note, that the com-

putational complexity of finding the noise subspace of Rn

can be reduced further if Rn is approximated as R̂n = yny
H
n

(i.e., as in stochastic gradient schemes).
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In the following subsections we present two different ap-

proaches for identifying the non-negligible CIR taps by solv-

ing the subspace problem that involves matrix Wn. The first

approach is based on the �1-norm relaxation while the second

one on suitable greedy optimization strategies.

3.1. �1 based sparse subspace tracking

By properly exploiting the results of [8] for the Least-Mean-

Squares (LMS) algorithm, we have derived two �1-sparse

subspace tracking algorithms, the so-called Zero-Attracting

DPM (ZADPM) and Re-weighted Zero-Attracting DPM

(RZADPM) which are briefly described below.

3.1.1. The Zero-Attracting DPM

Let us first define a new cost function J1(hn) as

J1(hn) = hH
n Wnhn + γ‖hn‖�1 , (13)

Thus, the constraint on the �1 norm of eq.(10) is embodied to

the cost function and the equivalent problem is given by

min
hn

J1(hn) s.t. ‖hn‖�2 = 1, (14)

where parameter γ controls the solution’s sparsity order. In

order to derive a gradient search procedure for this minimiza-

tion problem, we first need to compute the gradient of the

J1(hn) cost function. It can be shown that the resulting up-

dating step of the zero-attracting DPM (ZADPM) is given by

hn=orth

{
hn−1− μ

tr(Wn)
Wnhn−1− μγ

tr(Wn)
sgn(hn−1)

}
, (15)

where sgn(.) is the component-wise sign function.

3.1.2. The Reweighted Zero-Attracting DPM algorithm

We may redefine the cost function of eq.(13) by including a

log-sum penalty instead of the �1 one of ZADPM, i.e.,

J2(hn)=hH
n Wnhn+γ′∑N

n=1 log

(
1+

|h(i)
n |
ε

)
, (16)

where parameters γ′ and ε control the sparsity order of the

solution. The above log-sum penalty behaves more similarly

to the �0 norm that the �1 penalty of the ZADPM algorithm.

We compute again the gradient and thus derive in a similar

manner the update step of the RZADPM, which is given by

hn=orth

{
hn−1− μ

tr(Wn)
Whn−1− μγ′

tr(Wn)

sgn(hn−1)

1+ε|hn|

}
(17)

3.2. Greedy Approaches for Sparse Subspace Tracking

In this section a solution to the problem of eq.(9) is sought by

using greedy methods. In [9] greedy search and branch-and-

bound methods were proposed for maximizing a quadratic

function of a matrix A

max
h

JA(h) s. t. ‖h‖�0 ≤ δ, ‖h‖�2 = 1 . (18)

It turns out that the above maximization problem is equivalent

to the search of the submatrix of matrix A with the largest

leading eigenvalue. The iterative suboptimal methods sug-

gested in [9] compute, at iteration step n, the (n−1)×(n−1)
(backward method) or the (n+1)×(n+1) (forward method)

sub-matrix of the n×n input matrix A, with the largest eigen-

value out of all candidate sub-matrices. By properly exploit-

ing these results we may derive an adaptive greedy subspace

tracking technique for the problem at hand. Unfortunately, the

O(L4) complexity of the previous methods seems to be pro-

hibitive for adaptive implementations. Moreover, the meth-

ods cannot be directly applied to our case, since we search

for the sparsity pattern of the minimum eigenvector. A solu-

tion to this problem would be to apply these methods either

on matrix W−1
n or on I − μWn. Such a selection is based

on the observation that matrices W−1
n , I− μWn have singu-

lar values in reverse order with respect to those of Wn. An

alternative solution to the problem of (9) would be to esti-

mate the minimum eigenvector of Wn via eq. (12) and form

a sparse vector by setting to zero the N − S coefficients with

the smallest magnitude (i.e. ĥ|ΛS
(n) = 0(N−S)×1} where

ΛS = min
(∣∣∣ĥ(n)

∣∣∣ , N − S
)

). Surprisingly, it seems that,

for the proposed adaptive greedy subspace algorithms, such a

simple thresholding method is sufficient. In the simulations’

section it is clearly shown that the performance of the back-

ward search strategy coincides with that of simple threshold-

ing for the case of our interest.

4. SIMULATIONS

The performance of the derived techniques for a CIR of

length L + 1 = 25 was tested in a stationary and in a

slow-fading environment. The non-zero channel taps were

placed at positions Ω = {0, 10, 15, 19, 24} for both chan-

nels. The stationary channel’s taps were generated as i.i.d.

complex Gaussian variables of zero mean and variance

equal to 1. The fading channel taps were generated by

hi(n) = J0(2π · 10−2.5)hi(n − 1) +
√

1− |a|2ζ(n), where

J0 is the zero order Bessel function of the first kind and ζ(n)
is a white noise random variable of unit variance. In order

to get a variation in the sparsity pattern, we force the last

two non-zero taps to slowly fade towards zero in the fading

channel’s case. The system used N = 64 sub-carriers, the

received data were BPSK symbols corrupted by i.i.d. com-

plex Gaussian noise variables such that the Signal-to-Noise

(SNR) to be equal to 20dB. It should be mentioned that in

the simulation results given below we used the approach of

[4] to resolve the scalar ambiguity of (8) by using 4 pilot

symbols placed on the positions {0, 16, 32, 64} of the OFDM

block symbol. Even though the scheme uses these few pilots,

a comparison with a training-based scheme is meaningless,

since the performance of the latter depends linearly on the

number of the used pilots symbols. The SVD-based schemes
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(a) SVD-based methods

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Symbol

R
el

at
iv

e 
M

ea
n 

S
qu

ar
e 

E
rr

or
(d

B
)

DPM
GADPM
GRDPM
ZADPM
RZADPM

(b) Adaptive methods-Stationary Channel
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(c) Adaptive methods-Fading Channel

Fig. 1. Performance of the techniques at SNR=20dB

track the correlation matrix by employing an exponential

window update with a forgetting factor equal to 0.998. The

step size variable is set to μ = 1 for all the DPM-based

techniques and the parameters of the ZADPM and RZADPM

algorithms are set to γ = 10−4, γ′ = 10−2 and ε = 10, re-

spectively. The relative mean square error of each algorithm

is depicted after averaging the results of 100 independent

runs. In Fig.1(a) the performance of the SVD-based schemes

is depicted. For these schemes, the required noise subspaces

are computed by directly computing the SVD of the involved

matrices. More specifically we plot the performance of: the

simple SVD (“SVD”), the genie-aided SVD (“GASVD”),

the greedy-based SVDs using the thresholding approach

(“GRSVD”) and the backward method (“BWSVD”). Note

that in “GASVD” it is assumed that the sparsity pattern is

known and the required eigenvectors are computed from the

direct SVD of the sub-matrix that consists of the Ω rows and

columns of W. The sparse schemes exhibit significant per-

formance improvement compared to the non-sparse ones. It

is also noteworthy that the two greedy techniques (“GRSVD”

and “BWSVD”) attain similar performance, thus justifying

our choice to use the first one in the corresponding adaptive

technique.

In Fig.2(b)-(c) the performance of the adaptive sparse

DPM-based techniques is presented for a stationary and a

slow-fading environment respectively. The �1 − based ap-

proaches are denoted as “ZADPM” and “RZADPM”, respec-

tively, and the greedy approach that employs the thresholding

technique is denoted as “GRDPM”. For comparison purposes

we also plot in the same figure the DPM and the genie-aided

DPM (“GADPM”) techniques. We observe that the sparse

approaches exhibit faster convergence and significantly better

steady-state performance in both channel cases.

5. CONCLUSION

In this paper blind methods were proposed for sparse chan-

nel estimation. Moreover, adaptive sparse subspace tracking

techniques were proposed so as to provide efficient on-line

implementations of the proposed estimation schemes. The

presented techniques were applied in a ZP-OFDM system and

it was shown by typical simulations that they achieve signifi-

cantly improved performance compared to known non-sparse

approaches. Unfortunately due to space limitations, we were

unable to provide some initial theoretical results concerning

the convergence analysis and the identifiability properties of

the proposed schemes. The above issues are still under study

and the derived results will be presented in a next paper.
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