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ABSTRACT

The standard least mean squares (LMS) parameter estimation
method does not assume any special structure for the param-
eters being estimated. However, when additional knowledge
about the system is available, the performance of LMS can
be improved by appropriate modification of the algorithm.
We develop such modifications for the case of estimating fre-
quency sparse channels. Such modifications provide either
better performance or less complexity when compared to the
standard LMS algorithm. Decimated LMS and zero attracting
decimated LMS are the two methods proposed in this paper.
Simulation results are also provided to compare the perfor-
mance of the proposed algorithms to the standard LMS and
other sparsity aware modifications of LMS.

Index Terms— Least mean squares, sparsity, compressed
sensing.

1. INTRODUCTION

The least mean squares (LMS) algorithm is a well known and
widely used method for parameter estimation [1], [2]. Among
its many applications are system identification and channel
estimation for communication systems. The latter is the ap-
plication considered in this paper. The standard LMS algo-
rithm does not use any specific structural information about
the parameters being estimated. However, if such structural
information on the parameters is known, it may be possible
to improve the performance of the LMS algorithm by mod-
ifying it according to this additional knowledge. There has
been some work done to improve the LMS algorithm by ex-
ploiting the sparsity of systems and signals [3]– [6]. The way
the problem is approached in these works is to add a penalty
term to the traditional LMS cost function. This penalty term
is chosen so to force the resulting signal to be sparse.

Sparsity aware modifications of other estimation algo-
rithms such as recursive least squares (RLS) and Kalman
filter have also been proposed in recent years [7], [8]. These
algorithms originate from the theory of compressed sens-
ing (CS). CS is the theory of sparse signal recovery from
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fewer samples than signal’s dimension [9], [10]. Compressed
samples are usually collected using random measurement
matrices which are universal, meaning that regardless of the
sparsity basis the signal can be recovered from its samples
collected through such random measurement matrix. For
some sparsity bases such as the frequency domain or the dis-
crete cosine transform (DCT) domain, one can just collect
random time samples of the signal and still be able to recover
the signal with CS recovery algorithms [11].

In this paper, we propose LMS-based channel estimation
methods for frequency or DCT sparse channels that can be
recovered from a smaller number of random time samples.
The main idea of this work is to update the estimate of only
a subset of the channel impulse response (CIR) taps. The
particular subsets chosen here are the even or odd indexed
taps of the CIR. This leads to simplification of the channel
estimation algorithm compared to the standard LMS.

2. BACKGROUND AND SYSTEM MODEL

The CS theory suggests that one can recover a sparse signal
from a smaller number of samples than what is required by
the Nyquist rate [9], [10]. In the case of discrete time signals
of finite dimension, signals can be recovered from a number
of samples less than the signals’ dimension. Let f be a sparse
vector of dimension N represented in the orthonormal spar-
sity basis Ψ as

f
Ψ

= Ψf . (1)

For f to be sparse in Ψ, its representation f
Ψ

has to have a
few nonzero coefficients. An S-sparse signal in Ψ domain is a
signal with at most S nonzero coefficients in that domain. CS
suggests that a universal measurement matrix, which works
for all S-sparse signals regardless of the sparsity basis Ψ can
be designed [10]. Particularly, compressed samples can be
taken from f using a K × N random measurement matrix
Φ. The vector of compressed samples s can be expressed as
s = Φf = Φ

′f
Ψ

where Φ
′ = ΦΨ

−1. If a sufficient
number of samples is collected, then f

Ψ
can be obtained by

solving the basis pursuit optimization problem [10], which is
a convex optimization problem and can be solved by linear
programing.
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Fig. 1. Block diagram of a communication system including
channel estimation block.

We consider the common problem of channel estimation
in a communication system. The block diagram of the system
with the channel estimation block included is shown in Fig. 1.
The dotted box in Fig. 1 is the channel estimation block
which is implemented and executed at the receiver. The data
sequence transmitted over the channel is denoted as x(n).
The vector h(n) = (h(n), h(n − 1), . . . , h(n − N + 1))T

is the CIR which has a finite length N , (·)T denotes the
transposition operator, and v(n) is an unknown channel
noise at the receiver. The estimate of the channel ĥ(n) is
updated according to a particular estimation algorithm and

e(n) = d(n) − ĥ
T
(n)x(n) denotes the instantaneous error

with ŷ(n) = ĥ
T
(n)x(n) being the estimate of the system

output y(n).
In standard LMS, gradient descent is used to minimize a

cost function of the form L(n) = (1/2)e2(n) [2]. Therefore,
the update equation of LMS can be derived as

ĥ(n + 1) = ĥ(n) − μ
∂L(n)

∂ĥ(n)
= ĥ(n) + μe(n)x(n) (2)

where μ is the algorithm’s step size chosen from the range
0 < μ < λ−1

max
and λmax is the maximum eigenvalue of the

covariance matrix of x(n).
For the case when CIR is time sparse, i.e., when most of

the coefficients in the vector h(n) are zeros, different modi-
fications of the LMS algorithm are available [3], [6]. One of
the methods presented, the zero attracting LMS (ZA-LMS),
penalizes the non-sparse solutions by adding the l1-norm of
ĥ(n) to the standard LMS cost function. This penalty term
forces the tap values of ĥ(n) to approach zero, and hence the
name zero attracting LMS. The corresponding cost function is
LZA(n) = (1/2)e2(n) + γZA‖ĥ(n)‖l1 where ‖ · ‖l1 denotes
the l1-norm of a vector and γZA is the weight associated with
the penalty term. The update equation for this method can be
derived as

ĥ(n + 1) = ĥ(n) + μe(n)x(n) − ρZAsgn(ĥ(n)) (3)

where ρZA = μγZA and sgn(·) is the sign function which op-
erates on every component of the vector separately and sgn(x)
is zero for x = 0, 1 for x > 0, and −1 for x < 0.

Note that although only time domain sparsity is consid-
ered in [3], ZA-LMS can be easily extended to arbitrary spar-
sity bases. Let Ψ be the N × N orthonormal matrix denot-
ing a specific sparsity basis. The CIR h(n) is sparse in the
sparsity domain Ψ if its representation in Ψ, that is, the vec-
tor hΨ(n) = Ψh(n), has only a few nonzero components.
The ZA-LMS cost function can be rewritten as LZA(n) =

(1/2)e2(n) + γZA‖Ψĥ(n)‖l1 , and the update equation be-
comes

ĥ(n + 1) = ĥ(n) + μe(n)x(n) − ρZAsgn(Ψĥ(n))Ψ (4)

where sgn(Ψĥ(n)) is a row vector and sgn(Ψĥ(n))Ψ is a
row vector as well.

In [4], variations of the ZA-LMS and RZA-LMS algo-
rithms of [3], in which the filter coefficients are updated in
a transform domain leading to faster convergence with non-
white system inputs, have been proposed. A simplified ver-
sion of RZA-LMS obtained through the use of piece-wise ap-
proximation has been presented in [5].

3. PROPOSED ALGORITHMS

The signals of interest in this work are those that are sparse
in a domain such that the signals can be recovered from ran-
dom time samples. We aim at exploiting this feature in or-
der to design less complex or more accurate variations of the
LMS algorithm. The basic idea is to estimate at even time-
steps only the even taps of the CIR and do so for the odd
taps at odd time-steps. To this end, the training sequence
is chosen in a way that nothing is being sent into the chan-
nel at every other time-step. For example, a sample training
sequence with binary phase shift keying (BPSK) symbols is
x = 1, 0,−1, 0,−1, 0, 1, 0, 1, 0, · · · . In this way, at odd time-
steps only the odd taps of the channel contribute in the re-
ceived symbol d(n) and the even taps only affect d(n) at even
time-steps.

We develop two variations of the LMS algorithm based
on the aforementioned idea. Note however that other chan-
nel estimation algorithms can be modified based on this idea
and the LMS algorithm is selected only as a popular example.
According to the first algorithm, only even or odd taps have
to be updated, and at the end of the training phase, an l1-norm
minimization problem is solved to estimate all channel taps.
The other algorithm is an adaptation of the ZA-LMS which
alternatively updates the even and odd channel taps at each
time-step.

3.1. Decimated LMS
Let ro(n) be the set of odd indexed coefficients of the vector
r(n) and re(n) denotes the even indexed entries of r(n). The
training data sequence x is designed so that a BPSK symbol
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is being sent into the channel at odd time-steps and nothing
is sent at even time-steps. Therefore, at odd time-steps when
n = 2i + 1, we have y(n) = hT (n)x(n) = hT

o (n)xo(n),
since xe(n) will be an all zero vector. Also, at even time-steps
when n = 2i, y(n) = hT

e (n)xe(n). In the decimated LMS
algorithm, either the even or odd taps of the CIR are being
estimated. Let us assume that an estimate of the odd taps is to
be obtained. Then at every odd time-step the following LMS
type update rule is used

ĥo(n + 2) = ĥo(n) + μe(n)xo(n) (5)

where e(n) = d(n) − ĥ
T

o (n)xo(n). At the end of the train-
ing process, the LMS estimate of the CIR’s odd taps ĥo(nf )
is available where nf is the final training time-step. The es-
timate of CIR ĥ(nf ) is obtained as ĥ(nf ) = Ψ

−1ĥΨ(nf )

where ĥΨ(nf ) is the solution to the following minimization
problem

min‖h̃‖l1 subject to

∥∥∥∥
(
Ψ

−1h̃
)

o
− ĥo(nf )

∥∥∥∥
l2

≤ β (6)

where
(
Ψ

−1h̃
)

o
denotes the odd indexed entries of Ψ

−1h̃

and β is some positive number. The above equation is the l1-
norm minimization problem for the case of noisy compressed
samples [10].

The decimated LMS deals with vectors of a smaller size
than the standard LMS. In the case when the total number
of CIR taps, i.e., the cardinality of ĥ(n) is even, the size of
the vectors in the decimated LMS is exactly half the stan-
dard LMS. In addition, the decimated LMS is only executed
at odd or even time-steps depending on whether it estimates
ĥo(n) or ĥe(n). Therefore, the decimated LMS is run only
half the times that the standard LMS is executed. Considering
the size of the vectors involved as well as the number of iter-
ations that each algorithm needs for estimating CIR, we can
conclude that the complexity of the decimated LMS for esti-
mating ĥo(n) or ĥe(n) is about a fourth of the standard LMS.
However, decimated LMS has to solve an l1-norm minimiza-
tion problem at the end of the training process to obtain the
estimate of the complete CIR ĥ(n).

3.2. Zero Attracting Decimated LMS
Motivated by the fact that ZA-LMS has better performance
than the standard LMS, we also present the zero attracting
decimated LMS (ZAD-LMS) algorithm. In this method both
even and odd taps of the CIR are being estimated. In order to
force sparsity of the CIR, a term similar to the one in the up-
date equation for the ZA-LMS in (4) is present in ZAD-LMS.
Let us first consider odd taps of the CIR. For ZAD-LMS, the
terms ĥ(n + 1) and ĥ(n) in (4) are replaced with ĥo(n + 2)

and ĥo(n), while μe(n)xo(n) replaces μe(n)x(n). Now we
only need to replace ρZAsgn(Ψĥ(n))Ψ with a similar term
that results in a vector of the same size as ĥo(n). We choose

Algorithm 1 The ZAD-LMS Algorithm

Input: Data sequence x(n) and observations d(n), n =
1, · · · , nf .
Output: The estimated channel ĥ(nf ).
1. Initialize by equating h̃(1) and h̃(2) to all zero vector.
2. Perform nf iterations of ZAD-LMS:
for n = 1 to nf do

if n is odd, then
Update h̃(n) with ĥo(n − 2) and ĥe(n − 1).
Run the ZAD-LMS update equation (7a).

else
Update h̃(n) with ĥo(n − 1) and ĥe(n − 2).
Run the ZAD-LMS update equation (7b).

end if
end for
3. Form ĥ(nf ) using ĥo(nf ) and ĥe(nf − 1) or ĥe(nf )

and ĥo(nf − 1).

ρZADsgn(Ψh̃(n))Ψo where Ψo is a sub-matrix of Ψ with
only odd indexed columns retained. Note that h̃(n) is also
used instead of the current CIR ĥ(n), where h̃(n) is set to an
all zero vector when the algorithm starts at n = 1 time-step
and also for n = 2. For every n = 2i + 1 > 2, h̃(n) has
its odd indexed components set equal to ĥo(n − 2) and its
even indexed components are set equal to ĥe(n − 1). When
n = 2i > 2, ĥo(n − 1) and ĥe(n − 2) are used to form
the vector h̃(n). Therefore, the set of update equations of the
ZAD-LMS can be written as

ĥo(n + 2) =ĥo(n) + μe(n)xo(n)

− ρZADsgn(Ψh̃(n))Ψo, n = 2i + 1. (7a)

ĥe(n + 2) =ĥe(n) + μe(n)xe(n)

− ρZADsgn(Ψh̃(n))Ψe, n = 2i. (7b)

At the end of training, i.e., at the nf -th time-step, the two
vectors ĥo(nf ) and ĥe(nf − 1) or ĥe(nf ) and ĥo(nf − 1),
depending on nf being odd or even, produce the estimate of
CIR ĥ(nf ). The ZAD-LMS method is summarized in Algo-
rithm 1.

4. SIMULATION RESULTS

In our first simulation example, the problem of estimating a
CIR of length N = 16 is considered. The sparsity domain is
the DCT domain. The sparsity level of the CIR is 1, i.e., only
one of the coefficients of its representation in Ψ is nonzero.
This nonzero coefficient takes the value of either 1 or −1 with
the same probability.

Alongside the proposed algorithms, i.e., the decimated
LMS and ZAD-LMS, the performance of the standard LMS
and ZA-LMS methods are also measured as a point of ref-
erence. Parameter choices for these algorithms are ρZA =
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Fig. 2. Simulation example 1: Performance comparsion of
different estimation algorithms.

ρZAD = 5 × 10−4, μ = 0.05. In the decimated LMS the
parameter β in (6) is set to 0.1 when the signal to noise ratio
(SNR) equals 10 dB, and it is set to 0.05 when SNR = 20 dB.

Fig. 2 shows the mean square errors (MSEs) of differ-
ent estimation methods versus the length of the training se-
quence, i.e., the number of iterations. It can be seen that after
a certain number of iterations the decimated LMS catches up
with the standard LMS and it then displays a better perfor-
mance despite it being less complex than the standard LMS.
For both SNRs of 10 and 20 dB, the ZA-LMS has the best
performance while the proposed ZAD-LMS method shows
a better performance than the standard LMS for all training
sequence lengths unlike the decimated LMS whose perfor-
mance is worse than that of the LMS for small training se-
quences.

The second simulation example tests the effect of sparsity
level on the performance of the decimated LMS. Since dec-
imated LMS solves an l1-norm minimization problem at the
end of training to find an estimate of CIR, it is expected that
its performance deteriorates with increasing the sparsity level
of CIR. In this example, a CIR of length 64 is chosen. The
sparsity basis is the DCT domain and the sparsity level of the
CIR is varied from S = 1 to S = 4. The SNR is 10 dB,
μ = 0.005, and β = 0.1 in (6). Results are averaged over ten
thousand simulation runs.

Fig. 3 depicts the MSE curves versus length of the training
sequence. In this figure standard LMS is chosen as the point
of reference and its performance is compared with decimated
LMS for different sparsity levels. In order to allow for a fare
comparison, the CIR’s energy is kept the same which results
in the same MSE values for standard LMS regardless of a spe-
cific sparsity level. It can be seen from Fig. 3 that the smaller
the sparsity level of the signal the better is the performance of
the decimated LMS as it is expected.
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Fig. 3. Simulation example 2: Performance of the decimated
LMS and the standard LMS for different sparsity levels.

5. CONCLUSIONS

Two sparsity aware modifications of the standard LMS al-
gorithm, which are the decimated LMS and ZAD-LMS, for
frequency sparse channel estimation have been introduced
motivated by the need of deriving channel estimation meth-
ods with lower complexity. The algorithms have been com-
pared in terms of MSE to the standard LMS and the ZA-LMS.
Simulations demonstrating the effectiveness of the proposed
methods have been also shown.

6. REFERENCES

[1] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory, Prentice Hall, 1993.

[2] B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice Hall,
1985.

[3] Y. Chen, Y. Gu, and A. O. Hero, “Sparse LMS for system identification,”
in Proc. IEEE ICASSP, Taipei, Taiwan, Apr. 2009, pp. 3125–3128.

[4] K. Shi, and X. Ma, “Transform domain LMS for sparse system identifi-
cation,” in Proc. IEEE ICASSP, Dallas, USA, Mar. 2010, pp. 3714–3717.

[5] J. Yang, and G. E. Sobelman, “Sparse LMS with segment zero attractors
for adaptive estimation of sparse signals,” in Proc. IEEE APCCAS, Kuala
Lumpur, Malaysia, Dec. 2010, pp. 422–425.

[6] O. Taheri, and S. A. Vorobyov, “Sparse channel estimation with lp-norm
and reweighted l1-norm penalized least mean squares,” in Proc. IEEE
ICASSP, Prague, Czech Republic, May 2011, pp. 2864–2867.

[7] D. Angelosante, J. A. Bazerque, and G. B. Giannakis, “Online adap-
tive estimation of sparse signals: where RLS meets the l1-norm,” IEEE
Trans. Signal Processing, vol. 58, pp. 3436–3447, July 2010.

[8] N. Vaswani, “Kalman filtered compressed sensing,” in Proc. IEEE ICIP,
San Diego, USA, Oct. 2008, pp. 893–896.

[9] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
pp. 1289–1306, Apr. 2006.

[10] E. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans.
Inf. Theory, vol. 51, pp. 4203–4215, Dec. 2005.

[11] E. J. Candes, and M. B. Wakin, “An introduction to compressive sam-
pling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30,
Mar. 2008.

3184


