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ABSTRACT

In the context of multidimensional signals, the linear Wiener
receiver is frequently encountered in wireless communication
and in array processing; it is in fact the linear receiver that
achieves the lowest level of interference. In this contribution,
we focus on the study of the associated Signal-to-interference
plus noise ratio (SINR) at its output in the context of Ricean
multiple-input multiple-output (MIMO) channels. The case
of Ricean channels, which induces non-centered random vari-
ables, can be encountered in several practical environments
and has not been studied so far, as it raises substantial techni-
cal issues. With the help of large random matrix theory, which
has shown to be fruitful to successfully address several prob-
lems in wireless communications, we study the behaviour of
the SINR, together with its fluctuations via a central limit the-
orem. As realistic models also involve non-Gaussian random
variables, we relax the Gaussian assumption. This results in
an extra term involving the fourth cumulant in the expression
of the variance.

1. INTRODUCTION

In the mid-nineties, Telatar[1] and Foshini[2] demonstrated
the great potential of the multiple-input multiple-output
(MIMO) technology to meet the increasing demand to higher
data rates. Indeed, their analyses show that the mutual in-
formation over an N × n MIMO channel is proportional to
min(N,n). Nevertheless, the data rates stipulated by the
mutual information are only achievable in practice through
the use of high complexity algorithms. In reality, one usually
uses suboptimal decoders such as the Wiener filter, whose
performance are clearly of interest. The SINR at its output
has been extensively studied in the literature, for the corre-
lated and non correlated cases, [3, 4, 5]. The non-centered
Gaussian case has been considered in [6], where only the first
order result has been provided.

In this paper, we extend previous works to the case when
the channel, not necessarily Gaussian, admits a determinis-
tic line-of-sight component. Allowing the random compo-
nent to be non-Gaussian improves the fit of the presented re-
sults to the true SINR in many practical scenarios, especially

encountered in severe fading situations, like for instance the
Nakagami-m channels particularly suited to model some ur-
ban multipath environments [7]. In particular, it is proved
that in the asymptotic regime (i.e. for N,n → +∞ at the
same pace), the SINR fluctuates around its first order approx-
imate as a centered Gaussian random variable whose variance
depends on the cumulant of the entries and the deterministic
line-of-sight matrix.

Notations: In the following, boldface lower case symbols
represent vectors, capital boldface characters denote matrices
(IN is the size-N identity matrix). The transpose and Her-
mitian transpose operators are denoted (·)T and (·)∗, respec-
tively. The expectation and inverse operators will be denoted
by E and (.)

−1.

2. SYSTEM MODEL AND PROBLEM SETTING

Consider a wireless MIMO transmission model withN anten-
nas at the reception side and n+1 antennas at the transmission
side corresponding to n+1 distant sources. Let H denote the
N × (n+ 1) channel matrix given by:

H =
1√
n

(√
1

K + 1
X+

√
K

K + 1
Ã

)
,

where K is called the Rice factor, X is a random matrix with
i.i.d. entries with zero mean and unit variance (not necessarily
Gaussian), and Ã is the deterministic matrix which stands for
the line-of-sight component assumed known to the receiver.
Consider the following transmission model:

r = Hs+ n

where n is the additive white Gaussian noise (AWGN) ver-
ifying En = 0 and Enn∗ = ρIN , and s = [s0, · · · , sn] is
the unknown random vector of transmitted symbols with size
n+ 1. Partition the channel matrix

H =

[
y +

√
K

K + 1
a, Y +

√
K

K + 1
A

]
, then the estimate of s0 at the LMMSE receiver ŝ0 reads:

ŝ0 = (y∗ + b∗) ((Y +B) (Y∗ +B∗) + ρIN )
−1
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where b =
√

K
K+1a and B =

√
K

K+1A. The SINR βn is

thus given by:

βn = (y∗ + b∗)Q (y + b) ,

where Q is the matrix given by:

Q = ((Y +B) (Y∗ +B∗) + ρIN )
−1

.

For fixed dimensions N,n, the study of βn is rather difficult.
In what follows, we will consider the asymptotic regime de-
fined as N,n → ∞ such that:

0 < lim inf
N

n
≤ lim sup

N

n
< +∞,

which we will denote n → +∞ for notational simplicity. In
this regime, the first and second order statistics of βn will
depend on the following deterministic quantities which we
recall hereafter:

Theorem 1 ([8]). For any ρ > 0, the deterministic system:⎧⎪⎪⎨⎪⎪⎩
δ(ρ) =

1

n
TrTn(ρ)

δ̃(ρ) =
1

n
TrT̃n(ρ)

(1)

(2)

where Tn and T̃n are the matrices⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Tn(ρ) =

(
ρ(K + 1)(1 + δ̃(ρ))IN +

KAA
∗

(1 + δ(ρ))

)
−1

T̃n(ρ) =

(
ρ(K + 1)(1 + δ(ρ))In +

KA
∗

A

(1 + δ̃(ρ))

)
−1

(3)

(4)

admits a unique solution (δ, δ̃) in (0,∞)2.

3. FIRST ORDER RESULT

Theorem 2. Assume that supn ‖A‖ < ∞, where ‖.‖ is the
spectral norm. In the asymptotic regime, the following holds
true:

βn − βn −−−−−→
n→+∞

0 almost surely

where

βn =
1

n
trTn +Ka∗Tna,

where Tn is given in theorem 1.

Proof. To prove Theorem 2, we shall decompose βn as fol-
lows

βn = b∗Qb+ b∗Qy + y∗Qb+ y∗Qy.

It suffices then to determine the asymptotic limit of each of
the fourth terms. From theorem 1.1 in [9], we know that:

b∗Qb− (K + 1)b∗Tb −−−−→
n→∞

0 almost surely.

Hence, substituting b by
√

K
K+1a, we get:

b∗Qb−Ka∗Ta −−−−→
n→∞

0 almost surely.

Besides, by the strong law of large numbers for weighted
independent random variables, the crossed terms converge to
zero almost surely [10]. Finally, using standard results of the
characterization of the convergence of quadratic forms (see
Lemma 2.7 in [11]) , one can easily establish that:

y∗Qy − 1

n(K + 1)
trEQ −−−−→

n→∞

0 almost surely.

Finally, the theorem follows from the fact that:

1

n(K + 1)
tr (EQ)− 1

n
trT −−−−→

n→∞

0.

4. SECOND ORDER RESULT

Beyond the convergence βn − βn → 0, a natural question
arises regarding the accuracy of βn for finite values of N,n.
This can provide insights about the outage probability which
is defined as the probability that the SINR falls below a certain
threshold. To answer to this question, one needs to study the
fluctuations which will be described in the following theorem:

Theorem 3. Let γ = 1
n
Tr(T2), γ̃ = 1

n
Tr(T̃2), S =

diag(T), and S̃ = diag(T̃). Let κ be the fourth cumu-
lant of the entries of X given by κ = E|X1,1|4 − 2. Define
Δn, αn and ξn as:

Δn =

(
1− K

n(1 + δ)2
Tr(AA∗T2)

)2

− ρ2(K + 1)2γγ̃,

αn =
1

γ(1 + δ)4

{
γ

(
K

n
trT2AA∗ +K2a∗TAA∗Ta

)
+

(
(1 + δ)2 − K

n
trT2AA∗

)(
γ +Ka∗T2a

)}2

,

ξn = ρ2(K + 1)2K2 1

n
tr S̃2

N∑
k=1

[Taa∗T]
2
k,k

+
K4

(1 + δ)4

N∑
k=1

|u∗Taka
∗

kTu|2
1

n
trS2 +

1

n
trS2.

Then, the following holds true:

1. The sequence of real numbers:

Ω2
n =

αn

Δn

− K2
(
a∗T2a

)2
γ

+ κξn

satisfies:

0 < lim inf
n

Ω2
n ≤ lim sup

n
Ω2

n < +∞
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2. The SINR βn satisfies:√
n

Ω2
n

(βn − Eβn) −−−−→
n→∞

N (0, 1), in distribution.

The technical proofs of our results rely on the REFORM
(REsolvent, FORmula and Martingale) [12] method which
has been successfully used to establish the CLT for the mutual
information and the SINR for centered channels. It merely
consists in decomposing βn − Eβn into a sum of difference
of martingales by choosing the appropriate filtration. Details
are omitted because of lack of space, but the interested reader
can refer to the works in [5] and [13].

Remark 1. The expressions of the asymptotic theoretical
variance might seem involved. Their numerical computation
is quite easy since it merely depends on the system solutions
δ and δ̃ which can be computed using standard iterative
algorithms.

Remark 2. Theorem 3 describes the asymptotic behavior of
the SINR around its expected moment. Determining the fluc-
tuations of the SINR around the deterministic approximate
βn is not immediate since according to the results in [9],√
n
(
Eβn − βn

)
= O(1). We prove hereafter a stronger re-

sult which states that
√
nE
(
βn − βn

)
tends in reality to zero.

Theorem 4. Under mild technical assumptions, the SINR
satsfies:

Eβn − βn −−−−→
n→∞

0

As a corollary, we get thus:

Corollary 1. In the asymptotic regime, and under mild tech-
nical assumptions, the SINR satisfies:√

n

Ω2
n

(
βn − βn

) −−−−→
n→∞

N (0, 1), in distribution.

5. SIMULATIONS

In this section, we check by simulations the accuracy of
our results. We assume a non-centered channel with a line
of sight matrix Ã = [a(α1), · · · ,a(αn+1)] where a(α) =[
1, ejα, · · · , ej(N−1)α

]T
is a directional vector, the αi being

some given phase variables. The entries of the non-line of
sight matrix X are assumed to satisfy Xi,j = ri,j exp (jθi,j),
where θi,j are i.i.d. uniform phase variables over [0, 2π] and
ri,j are i.i.d. positive random variables. Depending on the
distribution of ri,j , many types of channels can be modelled.
We consider here the Nakagami-m channel, for which the
distribution of ri,j is given by:

fμ,ω(x) =
2μμ

Γ(μ)ωμ
x2μ−1e−

μ

ω
x2

,

where ω is set to 1 in order to get E|X1,1|2 = 1. The cumu-
lant of Xi,j is thus given by: κ = 1 + 1

μ
− 2. It should be

also noted that the Rayleigh distribution corresponding to the
Rayleigh channel (Gaussian non-line of sight component) can
be retrieved by setting μ to 1.

Fig. 1 displays the empirical estimation of Eβn as well
as βn with respect to c = N

n
when n = 32, N ranging from

4 to 32 and the rice factor and ρ set to K = 1, ρ = 0.5.
In that experiment, we consider the case of Gaussian random
variables (μ = 1), since the asymptotic approximate of Eβn

does not depend on the cumulant. As expected, the SINR in-
creases when the number of receiving antennas grows thereby
increasing the channel diversity.
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Fig. 1. Empirical and asymptotic means with respect to the c.

In a second experiment, we study the effect of the rice fac-
tor on the variance of the SINR. Fig. 2 displays the variance
of the SINR for n = 32, N = 8, ρ = 0.5 and μ = 0.6, while
the rice factor K ranges from 0.1 to 5. Note that when K

grows, the variance decreases, thus reducing the fluctuations
of the SINR.
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Fig. 2. Empirical and asymptotic variances with respect to the K.
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.

Finally, we represent in fig. 3 the histogram of
√

n
Ω2

n

(
βn − βn

)
when K = 5, ρ = 1, N = 32 and n = 64. We notice that
the behaviour of the SINR around its asymptotic equivalent
is similar to that of a Gaussian random variable.

6. CONCLUSION

In this paper, we have established the asymptotic Gaussian
behavior of the SINR at the output of the LMMSE receiver for
non-centered MIMO channels. We have provided simulations
that support our theoretical claims.
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