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ABSTRACT

In this paper, we present a robust technique based on cost ref-
erence particle filter (CRPF) for combined channel impulse
response (CIR) estimation and phase noise (PN) tracking in
OFDM systems without any priori information regarding the
noise in the state and measurement equation. Contrary to pre-
vious works, we hold no assumption regarding the magnitude
of the PN variance and hence no approximation is made to
simplify the model. The algorithm employs CRPF along with
a Rao-Blackwellization technique for CIR estimation assum-
ing static channel state over a number of OFDM symbols.
Numerical results are given to demonstrate the performance
of the algorithm based on mean squared error (MSE).

Index Terms— OFDM, Phase noise (PN), Channel im-
pulse response (CIR), Cost reference particle filter (CRPF).

1. INTRODUCTION

The phase noise (PN) phenomenon and performance of
OFDM systems in the presence of PN has been studied exten-
sively, including in [1, 2]. In recent years, various classes of
particle filter (PF) based methods have gained considerable
interest in data detection, channel estimation and PN tracking
applications using approximated PN model by assuming low
noise variance [3]–[5]. In [4], a marginalized particle filter
algorithm was introduced based on a state space model of the
OFDM system assuming no priori knowledge of the channel
and PN statistics. An approximation to the optimal impor-
tance function, [6], for sampling PN instances was derived
based on a linearized PN model.

In this paper, we employ CRPF, introduced in [7], for ro-
bust data aided CIR estimation and PN tracking in an OFDM
system requiring less computation than previously introduced
PF based methods. As in [4], no priori knowledge of the
channel and PN statistics is assumed, we furthermore do not
regard knowledge of any probability density functions in the
observation. Moreover, we refrain from making any assump-
tion regarding the magnitude of the PN variance, therefore
no linearization or approximation can be done to simplify the
model.

The paper is outlined as follows. In Section 2, we intro-
duce the OFDM received signal model and the PN distur-
bance commonly described in literatures by the random walk
(wiener process). Section 3 will give detailed description
of the employed algorithm for channel estimation and PN

tracking. In Section 4, we give numerical results showing the
performance of the proposed algorithm in mean squared error
(MSE) of the CIR estimation. Section 5 concludes the paper.

2. CHANNEL MODEL

Considering the m-th OFDM symbol, N groups of B-arry
data bits are encoded into complex symbol depending on the
modulation order (2B-QAM ) at the transmitter such that each
symbol in turn modulates one of N orthogonal sub-carriers.
An IFFT is employed to generate the time domain channel in-
puts, sm(k), where k denotes the k-th sample within the m-th
OFDM symbol. Assuming perfect frequency and timing syn-
chronization, the equivalent complex baseband signal model
at the receiver can be given by the equation below

rm(k) = ejθm(k)
L−1∑
l=0

hm(l)sm(k − l) + wm(k) (1)

where hm(l) is the channel’s CIR with L propagation paths,
wm denotes the additive zero mean complex gaussian channel
noise with unknown variance σ2

w and θm(k) is the PN sample
at time index k of the m-th OFDM symbol. Since the assump-
tion is that the channel remains static for a number of OFDM
symbols and the CIR estimation and PN tracking is done us-
ing a training sequence which is known at the receiver, we
shall henceforth drop the subindex m.

PN in an oscillator perturbed by thermal noise can be
modeled by wiener process which is a zero mean Gaussian
random process having a variance that grows with time. The
variance of the PN process increases linearly with time at a
rate c which is an empirical parameter that depends on the
quality of the oscillator, [2]. It is related to the single side
band −3dB bandwidth, β, of the lorentzian spectrum given
by

c = 4πβ (2)

Based on this assumption, for a sampling period of Ts at the
receiver, an equivalent discrete time model of the PN evolu-
tion is given by

θ(k) = θ(k) + ε(k) (3)

where ε(k) is a Gaussian random variable with zero mean and
variance σ2

ε = cTs.
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3. COST REFERENCE PARTICLE FILTERING

A standard dynamic state (DSS) space model is formulated as

xk = g(xk−1) + vk,

yk = f(xk) + wk

(4)

where for sample index k, xk and yk are the state and ob-
servation vectors of the system respectively while vk and wk

denote process and measurement noise of the system. The
functions g(·) and f(·) are the state transition and the mea-
surement functions respectively. Typically, the distribution of
vk, wk and the functions g(·) and f(·) determine the choice
of methods employed for recursive estimation of the unknown
state vector xk .

3.1. Introducing CRPF

CRPF is within the family of PF introduced to work in the
Bayesian framework without requiring the noise statistics in
the state and observation equation [7]. In standard PF algo-
rithm, the posterior distribution associated with the DSS
model, p(x0:k|y0:k) such that y0:k = (y0,y1, · · · ,yk)
and x0:k = (x0,x1, · · · ,xk), at time index k is repre-
sented by samples (particles) with corresponding weights,
{xi

0:k, wi
k}

M
i=1 where M is the number of particles [6]. The

particles in CRPFs, on the other hand are associated with the
cost and risk functions. The cost associated with the i-th par-
ticle given the current measurement, xi

0:k|y0:k, is determined
by the recursive convex sum

C(xi
0:k|y0:k, λ) = λC(xi

0:k−1|y0:k−1, λ) + ΔC(xi
k|yk) (5)

where λ ∈ (0, 1) is a forgetting factor which controls the
contribution of past particles while evaluating the cost func-
tion and ΔC(xi

0:k|xk) is the incremental cost function which
indicates the accuracy of xi

0:k|y0:k. A high value or low
value C(xi

0:k|y0:k, λ) respectively indicates that the current
estimate xi

k given the past and current measurement y0:k is
far from or close to the true value of the state xk. Moreover,
the risk function which measures the adequacy of the state at
the instant k − 1 given the new measurement is given by

R(xi
k−1|yk) = ΔC(g(xi

k−1)|yk). (6)

For every new observation yk+1, particles are made to ran-
domly propagate updating their associated cost,

Ξk+1 = {xi
k+1, C

i
k+1}

M
i=1 (7)

where Ci
k+1 = C(xi

0:k+1|y0:k+1, λ) and Ri
k = R(xi

k|yk+1).
Given the risk, Ri

k, and cost, Ci
k, of the i-th particle, a proba-

bility mass function (pmf), Πi
k ∝ μ(Ri

k) , is defined such that
μ : R → [0, +∞) is a real valued monotonically decreasing
function. The concept of re-sampling which exists in standard
PF algorithm is revived in CRPF. The particles are resampled

Table 1. Standard CRPF algorithm

Initialization: for k=0 and draw M initial particles according
to {xi

0}
M
i=1 ∼ p(x0) and setting the cost for

each to be Ci
0 = 0.

Then the recursive update for each instant k goes by the steps
1. Compute the risk and normalized pmf (function of Ri

k ) associat-
ed with each particle x

i
k by

Ri
k = λCi

k−1 + ||yk − f(g(xi
k−1))||

q .
and

π(Ri
k) =

(Ri
k−min[R

j
k
]Mj=1

+δ)−β

∑
M
l=0

(Rl
k
−min[R

j
k
]M
j=1

+δ)−β

where q ≥ 1 and β, δ > 0 with δ being a very small positive real
number which ensures numerical stability.

2. Resample particles based on the normalized pmf, Πi
k such that a

new particle set is formed
Ξ̃k−1 = {x̃i

k−1, C̃
i
k−1}

M
i=1.

3. Particles are made to propagate based on,
x

i
k ∼ p(xk|x̃k−1)

according to the distribution of the state process noise
4. Corresponding cost of each particle is computed by

Ci
k = λCi

k−1 + ||yk − f(xi
k−1)||

q

and the normalized pmf as a function of Ci
k+1 is given as

π(Ci
k) =

(Ci
k−min[C

j
k
]Mj=1

+δ)−β

∑
M
l=0

(Cl
k
−min[C

j
k
]M
j=1

+δ)−β

5. Estimate of the current state is finally obtained by taking the ave-
rage with respect to Πi

k

x
mean
k =

∑M

i=1 π(Ci
k)xi

k.

according to Πi
k in such a way that x̃i

k = xj
k with probability

Πj
k and a new particle set is formed with Ξ̃k = {x̃i

k, C̃i
k}

M
i=1

where C̃i
k = Cj

k for x̃i
k = x

j
k . The steps in CRPF algorithm is

outlined in Table 1. Within the standard DSS model provided
in (4), the state space representation of the problem at hand is
put in a matrix form as

xk = xk−1 + vk

rk = hkS
H
k ejθk + wk

(8)

where the state vector xk = [θk,hk] such that hk =
[h0, h1, . . . , hL−1] is a vector with L channel taps, Sk =
[sk, sk−1, . . . , sk−L+1] is the corresponding vector of trans-
mitted symbols and H denotes the Hermitian operator. Since
the channel is assumed static, the process noise vector is
vk = [εk,0Lx1] where εk ∼ N (0; σ2

ε) and 0Lx1 is an Lx1
vector of zeros . In the proceeding, the variances σ2

ε and σ2
w

are assumed to be unknown.

3.2. Rao-blackwellization

Although the state equation in (8) is linear in both state vari-
ables {θk,hk}, the observation however is nonlinear in θk.
Given the state variables at the time index k, the idea behind
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rao-blackwellization in PFs is to integrate out and marginal-
ize some of the states in the posterior distribution analytically
in order to improve the accuracy in the approximation. More-
over, it results in reduced dimension of states and thus re-
duced number of particles employed in PF algorithm. The
marginalization follows from Baye’s rule

p(θk,hk|r0:k) = p(hk|θk, r0:k)p(θk|r0:k) (9)

in which case, p(hk|θk, rk) is analytically tractable being cir-
cular gaussian distribution with linear state variable hk. In
this paper, standard kalman filtering is employed for optimal
estimation of the channel taps hk given the PN estimates ob-
tained by CRPF algorithm.

3.3. CIR estimation and PN tracking

Having separated the state variable into linear and non-linear
parts, the proposed method relies on the available observa-
tions r0:k without a priori assumption of the probability dis-
tribution of the measurement noise, p(wk). The channel is
static and conditionally linear in the measurement model for
which the posterior distribution is given by p(hk|θk, r0:k) ∼
N (0, σ2

w). Sequential updating of the CIR, hk, and the co-
variance matrix, Pk|k−1, of estimation error corresponding to
each particle is given by

hi
k|k−1 = hi

k−1|k−1

Pi
k|k−1 = Pi

k−1|k−1

(10)

for i = 1, . . . , M . Following which the kalman gain Ki
k is

computed by

Ki
k = Pi

k|k−1(Skejθi
k)H(SkP

i
k|k−1Sk + σ2

wk
)−1 (11)

An unbiased numerical estimator of σ2
wk

was introduced in
[8] and is computed for each particle

σ̂2,(i)
wk

=

k∑
n=0

(
‖rk − (hi

kSkejθi
k + χi

k)‖2

k − 1
−

SkP
i
k|k−1Sk

k

)

(12)
where χi

k = 1
k

∑k

n=0(rk − hi
k|k−1Skejθi

k). The state update
follows in the standard form

hi
k|k = hi

k|k−1 + Ki
k(rk − hi

k|k−1Skejθi
k)

Pi
k|k = (I − Ki

kSkejθi
k)Pi

k|k−1

(13)

CRPF algorithm is employed to approximate the marginal
distribution p(θk|r0:k) using particles with their associated
cost. The implementation has an advantage over standard PF
since expression of the expected posterior distribution is not
required and thus computationally less demanding. In (8),
the state and observation noise are zero mean with unknown
variances. The algorithm is therefore set to run with initial

parameters and states

λ, q, δ, β, M,

{
σ2,(i)

ε0
, σ2,(i)

w0
, θi

0 ∼ p(θ0),h
i
0|0,P

i
0|0, C

i
0 = 0

}

(14)

where {·} contains the parameters and states that are se-
quentially updated with time and p(θ0) is a distribution from
which particles are initially drawn. Given the set of initial
particles, {θi

0, C
i
0 = 0}M

i=1, the corresponding risk function is
sequentially computed for time index k

Ri
k = λCi

k−1 + ‖rk − hi
k|k−1Skejθi

k−1‖q (15)

In order to avoid the re-sampling stage and computation of
πi

k(Ri
k), once again a technique employed in [8] and showed

to have similar performance as the re-sampling technique in
the standard CRPF algorithm (Table 1) is employed. Particles
are sorted in ascending order of the corresponding risks and
the first M/N particles are chosen and replicated N times
forming a new particle set, {θ̃i

k−1, C̃
i
k−1}

M
i=1.

Particles are then propagated based on the state transition
distribution, θi

k ∼ p(θk|θ̃i
k−1) = N (0, σ

2,(i)
εk

), for which the

unknown variance σ
2,(i)
εk

is computed in time adaptive form
by

σ2,(i)
εk

= σ2,(i)
εk−1

, for k ≤ 10

σ2,(i)
εk

=
k − 1

k
σ2,(i)

εk−1
+

‖θi
k − θ̃i

k−1‖
2

k
for k > 10

(16)

and the associated cost of each particle is

Ci
k = λCi

k−1 + ‖rk − hi
k|kSkejθi

k‖q (17)

Having computed the normalized pmf as a function of the
cost, πi

k(Ci
k), the final estimates of the CIR and the PN sample

at time index k is given by taking the average as

ĥk =

M∑
i=1

πi
k(Ci

k)hi
k|k , θ̂k =

M∑
i=1

πi
k(Ci

k)θi
k (18)

The proposed algorithm for CIR estimation and PN tracking
is outlined by the steps in Table. 2.

4. NUMERICAL RESULTS

Performance of the proposed method was analyzed from
simulations using a known OFDM symbol with N = 80
sub-carriers employing 4-QAM to modulate each sub-carrier.
Moreover, an L = 10 tap rayleigh channel is considered
and M = 100 particles are drawn from a uniform distribution
θi
0 ∼ p(θ0) = [−0.5, 0.5] to form initial cloud of PN samples.

Corresponding to each particle, state and error covariance ma-
trix in the kalman filter are initialized by hi

0|0 = 0Lx1 and

Pi
0|0 = 1

L
IL respectively, where 0Lx1 is an Lx1 vector of
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Table 2. CRPF algorithm for CIR estimation and PN tracking

1. Initialize parameters and states in (14).
2. Proceed with the linear state (CIR) propagation stage of the Kal-

man filter in (10).
3. Employ CRPF algorithm as detailed in (15)-(17) and obtain final

estimate of the PN sample at time index k by taking the average
with respect to πi

k(Ci
k), (18).

4. Kalman state update of the CIR follows using (11)-(13).
5. Once again final estimate of the CIR is obtained by taking the m-

ean with respect to πi
k(Ci

k) as in (18).
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Fig. 1. MSE of CIR estimate as a function of SNR for a PN
variance σε = 1 × 10−3

zeros and IL is the identity matrix. Furthermore, the channel
noise and PN variances are initialized by values drawn from
the uniform distribution σ

2,(i)
w0

∼ [0, 1] and σ
2,(i)
ε0

∼ [0, 0.1]
respectively. The remaining parameters in (14) were set to be
λ = 0.1, q = 2, δ = 0.01 and β = 2.

The mean squared error (MSE) of the CIR estimate was
taken as performancemeasure based on 1000 OFDM symbols
and was computed

MSEh =

1000∑
n=1

L∑
l=1

(hn
l − ĥn

l )2. (19)

It can be seen from Fig. 4 that for lower SNR values, hav-
ing no priori knowledge of the measurement distribution will
have minimal relevance to the estimation performance. For
higher SNRs, the MSE of the proposed method has a slightly
higher but comparable value compared with the MSE of the
CIR estimate employed using marginalized PF in [4]. Given
that we made no assumption regarding the probability distri-
bution of the measurement noise when tracking the PN noise,
the impact due to the absence of the information on the per-
formance is felt at higher SNRs.

5. CONCLUSIONS

In this paper, we presented CRPF algorithm combined with
rao-blackwellization technique for robust CIR estimation and
PN tracking, making no assumptions regarding the noise
statistics. The outlined algorithm required no linearization
or approximation of the measurement model. Moreover, it
does not require computation of the optimal importance func-
tion and employs a simplified particle re-sampling technique.
Therefore compared to previously developed PF based tech-
niques [3, 4], the presented algorithm has less computational
requirement with comparative performance.
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