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ABSTRACT

We investigate the impact of channel estimation (CE) on the per-
formance of point-to-point transmission schemes in wireless ad
hoc networks. We first derive a new closed-form expression for
the outage probability when the minimum mean square error es-
timator is utilized for CE, and show that the training-pilot length
should increase as a linear function of the network intensity to
maintain a fixed CE quality. Next, we derive the optimal training-
pilot length which maximizes the transmission capacity under
interference-limited conditions, and show that this optimal length
increases with the frame length according to a square-root law.

Index Terms— Channel estimation, wireless ad hoc net-
works, outage probability, transmission capacity

1. INTRODUCTION

The use of channel state information (CSI) has been widely
recognized as essential in achieving high performance in wire-
less systems, through either boosting the effective signal power,
or mitigating unwanted interference. CSI is typically obtained
through the use of pilot training symbols, which are known to
both the transmitter and receiver. In practice, channel estimation
(CE) errors occur, and the negative impact of such errors has been
widely studied in simple networks, see e.g., [1, 2]. The investi-
gation into more complex networks, such as ad hoc networks,
is however quite limited. An exception is the recent work [3]
which investigated the effects of CE errors on the medium access
control (MAC) layer in ad hoc networks. In contrast, we will
focus on studying the impact of CE errors on the physical layer.

We model the spatial distribution of the transmitting nodes
as a homogeneous Poisson point process (PPP) on a 2-D plane.
Besides approximating realistic network scenarios, modeling the
nodes according to a PPP has the benefit of allowing network
performance measures, such as the transmission capacity [4], to
be obtained. The transmission capacity has been studied for a
variety of transmission schemes [5] in ad hoc networks, however
typically with the assumption of perfect CSI.

We consider wireless ad hoc networks comprising point-to-
point transmissions, with each receiver utilizing the linear min-
imum mean square error (MMSE) estimator to obtain an esti-
mate of its own communication channel. The estimated chan-
nel is then used in the standard way to aid data detection. To
analyze the performance of this system, we first derive a new
closed-form expression for the outage probability, and then show
that the training-pilot length should scale as a linear function of
the network intensity to maintain a fixed CE error variance. We

then derive the optimal training-pilot length which maximizes the
transmission capacity under interference-limited conditions, and
this is shown to scale with the frame length according to a square-
root law.

2. SYSTEM MODEL

We consider a wireless ad hoc network comprising transmitter-
receiver pairs, where each transmitter communicates to its corre-
sponding receiver in a point-to-point manner, treating all other
transmissions as interference. The transmitting nodes are dis-
tributed spatially according to a homogeneous PPP of intensity
λb in R

2. Each transmitting node transmits with probability p ac-
cording to a slotted ALOHA MAC protocol, and communicates
with its corresponding receiving node located at a distance rtr.
The final intensity of transmitting nodes is thus λ = pλb.

Our objective is to investigate network performance mea-
sures. To obtain such measures, we invoke Slivnyak’s theorem
of a PPP [6] which states that it is sufficient to focus on a typical
transmitter-receiver pair, denoted by index 0, with the typical
receiver located at the origin. We consider a network where
each node is equipped with a single antenna, and the transmitting
nodes, with the exception of the typical transmitter, constitute a
marked PPP [6]. This is denoted by Φ(λ) = {(D�, h�0), � ∈ N},

where D� and1 h�0
d∼ CN (0, 1) model the location and channel

respectively of the �th transmitting node with respect to (w.r.t.)
the typical receiver. The transmitted signals are attenuated by a
factor 1

δ+rα
with distance r where δ > 0 and α > 2 is the path

loss exponent.
Each receiver obtains an estimate of the CSI via pilot train-

ing symbols sent from their corresponding transmitter. The
transmitter-receiver channels are constant over a frame com-
prising L channel uses, and evolves independently from frame
to frame. Each transmitter sends a frame to the corresponding
receiver, which comprises training pilots of length LT channel
uses, as well as the data symbols. The training pilots are inserted
at the beginning of each frame2, and are utilized by the receiver
to obtain an estimate of the channel. In the usual way, this chan-
nel estimate is then used to detect the data symbols from the
corresponding transmitter, and this procedure is repeated over all
subsequent frames. We now describe the CE and data detection
procedure in more detail.

1The notation X
d
∼ Y means that X is distributed as Y .

2This is commonly used in some modern communication standards, such
as the North America TDMA standard.
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2.1. Channel Estimation

The 1×LT baseband equivalent received vector y0 at the typical
receiver, formed by concatenating the received symbols during
the first LT channel uses, is given by

y0 =

√
LTP

δ + rαtr
h00t00 +

∑
�∈Φ(λ)

√
P

δ + |D�|α
h�0x� + n0 (1)

where P is the transmission power of each symbol, t00 is a 1 ×
LT training symbol vector satisfying t00t

†
00 = 1 [7], h00

d∼
CN (0, 1), x�

d∼ CN1×LT
(0, ILT

) is a transmission vector3 from

node �, and n0
d∼ CN1×LT

(0, N0ILT
) is the additive white

Gaussian noise (AWGN) vector.
To obtain an estimate of the channel, we utilize the low-

complexity linear MMSE estimator, which is optimal among the
class of linear estimators. According to the MMSE estimator [8],
the best estimate of h00 is

ĥ00 =

√
LTP
δ+rαtr

t00y
†
0

LTP
(
δ + rαtr

)−1
+ PVar(I) +N0

(2)

where I =
∑

�∈Φ(λ) (δ + |D�|α)−
1
2 h�0t00x

†
�

and Var(·) de-
notes the variance function. The CE error can thus be expressed
as e00 = h00 − ĥ00. For the MMSE estimator, it can be shown

that (i) ĥ00 and e00 are uncorrelated, and (ii) if e00
d∼ CN (

0, σ2
e

)
,

then ĥ00
d∼ CN (

0, 1− σ2
e

)
.

2.2. Data Transmission

After the CE stage, the transmitter then sends its data for the rest
of the frame duration. The received signal at the typical receiver
during the nth channel use, for n = LT + 1, . . . , L, is given by

r0[n] =

√
1

δ + rαtr
ĥ00s0[n] (3)

+

√
1

δ + rαtr
e00s0[n] +

∑
�∈Φ(λ)

√
1

δ + |D�|α
h�0s�[n] + n0[n]

︸ ︷︷ ︸
unknown at the receiver

where s�[n] (� ∈ {0,N}) are the independent Gaussian dis-
tributed data symbols from the �th transmitting node satisfy-

ing E
[
|s�[n]|2

]
= P , and n0[n]

d∼ CN (0, N0) is AWGN.

As the terms in (3) which are unknown at the receiver are
treated as noise, an estimate of s0[n] is then formed as ŝ0[n] =√

δ + rαtr
ĥ∗

00

|ĥ00|2
r0[n], from which the signal-to-interference-plus-

noise ratio (SINR) can be written as

SINR =

ρ
δ+rαtr

|ĥ00|2∑
�∈Φ(λ)

ρ
δ+|D�|α |h�0|2 + ρ

δ+rαtr
σ2
e + 1

(4)

where ρ = P
N0

is the transmit signal-to-noise ratio (SNR).

3The Gaussian assumption for the interfering symbols is well justified. As
we will show, the optimal pilot-training length is typically small compared
to the frame length, thus in the optimal scenario, the majority of the frame is
used for data transmission, during which the data symbols transmitted from
all nodes are Gaussian distributed.

3. PERFORMANCE ANALYSIS: OUTAGE
PROBABILITY AND TRANSMISSION CAPACITY

In this section, we will investigate the impact of CE on the outage
probability and transmission capacity.

3.1. Outage Probability

The outage probability is defined as the probability that the mu-
tual information falls below a data rate operating value Reff data
bits/node/channel use, and is given by

F(β) : = Pr

((
1− LT

L

)
log2 (1 + SINR) ≤ Reff

)
= Pr

((
1− LT

L

)
log2 (1 + SINR) ≤

(
1− LT

L

)
R

)
= Pr(SINR ≤ β) (5)

where R is the code rate over the data transmission stage, β =

2R−1 is the SINR operating value, and the second line follows by

noting that Reff =
(
1− LT

L

)
R. Based on the SINR expression

in (4), we present the following lemma:

Lemma 1. The outage probability in ad hoc networks where the
MMSE estimator is utilized for CE is given by

F (β, LT , λ) = 1− FSU
suc (β, LT , λ) F

I
suc (β, LT , λ) (6)

where FSU
suc (β, LT , λ) = exp

((
1 +

δ+rαtr
ρ

)
β

σ2
e−1

+ β
)

and

FI
suc (β, LT , λ) = exp

(
−πλ(δ+rαtr)βΓ(1+

2
α )Γ(1− 2

α )

(1−σ2
e)

2
α ((1−σ2

e)δ+(δ+rαtr)β)
1− 2

α

)
. In

these expressions, the CE variance, σ2
e , dependent on both λ and

ρ, is given by

σ
2
e =

1
LT

(δ+rαtr)

(
πλδ

2
α

−1Γ(1+ 2
α )Γ(1− 2

α )+
1
ρ

) + 1
. (7)

Proof. See the Appendix.

Note that in Lemma 1, FSU
suc (β, LT , λ) can be interpreted as

the outage probability of a system which, during the data trans-
mission stage, operates in the absence of interference (i.e., sin-
gle user), whilst FI

suc (β, LT , λ) can be interpreted as the outage
probability of a system which, during the data transmission stage,
operates in the absence of receiver noise (i.e., interference lim-
ited). Moreover, we note that when σ2

e = 0, (6) reduces to the
outage probability with perfect CSI [9, Eq. (3.3)]; while when
λ = 0, (6) reduces to the outage probability of a point-to-point
single-user system [10, Eq. (5.54)].

In addition, we observe in Lemma 1 that both FSU
suc (β, LT , λ)

and FI
suc (β, LT , λ) decrease with σ2

e , implying that the outage
probability increases with the CE error, as expected. We can
also observe that, with CE error, increasing the network inten-
sity λ has a dual negative effect on the outage probability. The
first effect occurs during the CE stage, where increasing λ, for
a fixed training-pilot length LT , increases the CE error. This
subsequently degrades both FSU

suc (β, LT , λ) and FI
suc (β, LT , λ).

Second, during the data transmission stage, increasing λ in-
creases the multi-node interference, which subsequently degrades
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FI
suc (β, LT , λ). Finally, we observe in (7) that the training-pilot

length should increase as a linear function of the network inten-
sity λ, to maintain a fixed error variance.

3.2. Transmission Capacity

The transmission capacity is defined as the maximum number of
successfully transmitted data bits/channel use/unit area [4], and is
given by

c (ε, LT ) =

(
1− LT

L

)
Rλ (ε, LT ) (1− ε) (8)

where λ (ε, LT ) is the contention density, defined as the inverse
of ε = F (β, LT , λ) taken w.r.t. λ.

From (8), we can observe that increasing LT has both a pos-
itive and a negative effect on the transmission capacity. The pos-
itive effect occurs since, as can be easily shown, the contention
density λ (ε, LT ) increases with LT . The negative effect occurs
since for a fixed frame length L, the time spent for data trans-
mission decreases with LT . A natural question then arises as to
the optimal training-pilot length L∗

T which maximizes the trans-
mission capacity. Although obtaining an exact expression for
L∗
T is difficult, progress can be made by considering asymptotic

regimes. It is thus first convenient to present the following lemma
for the transmission capacity in the interference-limited regime
(ρ → ∞) and for small outage constraints ε:

Lemma 2. In the interference-limited scenario (ρ → ∞) and for
a sufficiently small outage constraint ε, the transmission capacity
is given by

c (ε, LT ) = g (LT ) cperfect(ε) + o (ε) (9)

where g (LT ) =
(
1− LT

L

)
LT

LT+

(
1+

(
1+

rα
tr
δ

)
β

)1− 2
α

is the scal-

ing factor reflecting the effects of CE, and

cperfect(ε) =
(δ + (δ + rαtr) β)

1− 2
α log2 (1 + β) ε

πΓ
(
1 + 2

α

)
Γ

(
1− 2

α

) (
δ + rαtr

)
β

(10)

denotes the transmission capacity in an ideal scenario where no
training pilot is required and the receiver has perfect CSI.

Proof. Omitted due to space limitations.

Using Lemma 2, by taking derivatives, we can easily calcu-
late the optimal training-pilot length which maximizes c (ε, LT )
in (9), with the result given in the following theorem:

Theorem 1. The optimal training-pilot length which maximizes
the transmission capacity in (9) is4

L
∗
T =

⎧⎨⎩
⌊
L̃∗
T

⌋
if c

(
ε,

⌈
L̃∗
T

⌉)
≤ c

(
ε,

⌊
L̃∗
T

⌋)⌈
L̃∗
T

⌉
otherwise

(11)

where5

L̃∗
T
=

(√
1 + δ

1− 2
α L

(δ+(δ+rαtr)β)
1− 2

α

− 1

) (
1 +

(δ+rαtr)β
δ

)1− 2
α

.

4Here we implicitly assume that ε is sufficiently small such that the o(ε)
term in (9) can be ignored.

5Note that �·� and �·� are the ceiling and floor functions respectively.

From (11), we see that L∗
T increases with the frame length

L, and in particular for large L, L∗
T scales as O

(√
L
)
. This im-

plies that for large L, the fraction of the total frame length for

CE, L∗

T

L , scales as O
(

1√
L

)
, which can be quite small. The prac-

tical interpretation is that for large L, it is preferable to dedicate
a larger proportion of the frame for data transmission. A similar
result was obtained in [11] for a time-division duplexing mul-
tiuser MIMO downlink scenario, where the optimal training-pilot
length which maximizes the spectral efficiency was also shown to
scale according to a square-root law with the frame length.

Fig. 1 plots L∗
T vs. the frame length L. We observe that the

‘Analytical’ curves based on (11) closely match the numerical re-
sults, and L∗

T increases sub-linearly w.r.t. L, as predicted. More-
over, we observe that it is optimal to use only a small fraction of
the frame length for CE for practical networking parameters. For
example, consider a typical system with a coherence bandwidth
of Wc = 500 kHz and a coherence time of Tc = 2.5 ms [10].
These parameters correspond to L = 1250 channel uses, which
from Fig. 1 corresponds to L∗

T = 110 when α = 3, and thus only
8.8% of the frame is used for CE.

We will now compare the transmission capacity when using
the optimal training-pilot length with an ideal (impractical) sce-
nario where perfect CSI is obtained without the need for any train-
ing. For large L, it can be shown that

c
(
ε, L̃∗

T

)
cperfect (ε)

= g
(
L̃∗
T

)
=1− 2

√(
1 +

(
1 +

rαtr
δ

)
β

)1− 2
α

√
1

L
+ o

(√
1

L

)
. (12)

The key insight drawn from (12) is that for channels with a suf-
ficiently long coherence time (i.e., the channel remains constant
during the transmission of a packet of length L, whose value may
be large), there is a negligible performance loss resulting from
channel estimation compared to the perfect CSI scenario. This is
highlighted in Fig. 2, which plots the transmission capacity ratio
c(ε,L∗

T )
cperfect(ε)

vs. frame length L for different path loss exponents
α. We observe that the transmission capacity with imperfect CSI
achieves a high percentage of the transmission capacity with per-
fect CSI for even small frame lengths.

We also observe from (12) that c(ε,L∗

T )
cperfect(ε)

decreases with the
path loss exponent when rtr ≥ 1, implying that the perfect CSI
scenario is harder to approach at high path loss environments.
This can also be observed in Fig. 2, where we see as predicted
that the ratio between the imperfect and perfect CSI scenarios
decrease with the path loss exponent.

4. APPENDIX

Applying Campbell’s Theorem [6], it can be shown thatVar(I) =
πλδ

2
α
−1Γ

(
1 + 2

α

)
Γ

(
1− 2

α

)
. Substituting Var(I) into (5), and

after some algebraic manipulations, we obtain (7). We then note
that ĥ00 is statistically equivalent to

√
1− σ2

e h̃00, where h̃00 ∼
CN (0, 1). By noting that ‖h̃00‖2 is exponentially distributed, the
outage probability conditioned on the interference
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Fig. 1. Optimal training-pilot length L∗
T vs. the frame length

L in the interference-limited scenario for different path loss
exponent α, and with rtr = 8 m, δ = 1, β = 3, and ε = 0.01.

Ia =
∑

�∈Φ(λ) (δ + |D�|α)−1 ‖h�0‖2 is

F(β|Ia) = 1− exp

(
− (δ + rαtr)β

ρ
(
1− σ2

e

) (ρIa +W )

)
(13)

where W =
ρσ2

e

δ+rαtr
+ 1. Averaging out Ia, it can be easily shown

that

F(β) = 1− exp

(
− (δ + rαtr) β

ρ
(
1− σ2

e

)W)
LIa(s)

∣∣∣
s=

(δ+rα
tr)β

1−σ2
e

(14)

where LIa(s) denotes the Laplace transform of Ia, given by [12]

LIa(s) = exp

(
−πλs

(δ + s)1−
2
α

Γ
(
1 +

2

α

)
Γ

(
1− 2

α

))
. (15)

The result follows by substituting (15) into (14).
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