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ABSTRACT

We present a novel weight design for average consensus that im-
proves its transient and stead-state performance. The idea is to blend
Metropolis-Hastings weights and convex-optimization weights via
signal-adaptive morphing coefficients. The resulting scheme is
shown to be particularly useful in dynamic scenarios where the
measurements feature abrupt changes or unknown noise levels.

Index Terms— Average consensus, wireless sensor networks,
distributed inference

1. INTRODUCTION

Distributed computing, in particular distributed inference, has devel-
oped into a very attractive research area during the last decade, due
to the numerous applications, e.g., in tele-medicine, environmental
monitoring, and military surveillance (cf. [1]). We here deal with the
problem of distributed averaging based on average consensus (AC)
which has its origin in the thesis of Tsitsiklis [2]. Since then, numer-
ous extensions and modifications of the AC method have been pro-
posed (see [3] for an overview). In this paper, we consider discrete-
time AC because we are interested in applications of AC in wireless
sensor networks (WSN) where the communication between sensors
requires temporal discretization (sampling). For simplicity we will
restrict to the synchronous case even though asynchronous AC (see
e.g. [4] and [5]) has certain advantages in the context of WSN.

An important practical problem with AC is the choice of the
weights (we will consider this in the next sections in more detail).
In [6], several weight designs have been proposed with the goal of
fast convergence. A different method to improve convergence was
proposed in [7] based on local state prediction in the network nodes.
An alternative to AC for distributed averaging is provided by con-
sensus propagation [8–10]. Consensus propagation is based on a
completely different approach and cannot be transformed into the
form of AC, even though it is sometimes incorrectly described as a
dynamic weight adaptation method for AC.

An extension of continuous-time AC to time-varying (dynamic)
scenarios was introduced in [11]. A discrete-time version of dy-
namic AC based on first-order differences was proposed by Zhu and
Martı́nez [12] along with an upper bound on the steady state error.
This paper also introduces another variant which uses higher-order
differences in order to improve the averaging performance at the
price of increased communication overhead.

In this paper, we propose a novel nonlinear method for design-
ing the AC weights; our scheme is motivated by nonlinear AC in-
troduced in [13]. Our method involves a local linear combination of
differently designed weights where the coefficients in the linear com-
bination depend nonlinearly on the previous states/measurements,
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thereby rendering the whole design nonlinear. We develop this ap-
proach both for the static and the dynamic case and we demonstrate
by means of numerical simulations that our method outperforms ex-
isting weight designs in terms of convergence speed and residual
error.

2. PRELIMINARIES

We consider a WSN were nodes/sensors are distributed randomly.
Each node can exchange messages with other nodes that lie within
a prescribed communication range. With the assumption of bidi-
rectional communication, such a WSN can be modeled by an undi-
rected random geometric graph G = (V, E) where V denotes the set
of nodes (I = |V| is the number of nodes) and E ⊂ V × V the set
of undirected edges. Node i measures the signal si[n] (n denotes
discrete time). The goal of distributed averaging is to estimate the
(time-varying) mean s̄[n] = 1

I

∑I

i=1 si[n] in a non-centralized fash-
ion. For the static case the measurements are time-invariant and we
omit the variable n.

In static scenarios, AC is applied to the sensor measurements si,
i = 1, . . . , I , resulting in a length-I state vector x[k] that serves
as estimate of the true mean s̄ = s̄1; here, k denotes the iteration
index, s̄ = 1

I

∑I

i=1 si, and 1 is the all-ones vector. Static linear
AC works by choosing the initial states equal to the measurements,
i.e., x[0] = s = (s1 . . . sI)

T , and subsequently exchanging and
averaging the states of neighboring nodes in an iterative manner, i.e.,

xi[k + 1] = wii xi[k] +
∑

j: (i,j)∈E
wij xj [k],

where wij denotes suitably chosen weights. This procedure can be
compactly characterized by the state update

x[k + 1] = Wx[k] , (1)

where the weight matrix is defined by [W ]ij = wij . Note that
wij = 0 unless (i, j) ∈ E or i = j. Since we consider undirected
graphs, the weight matrix is assumed to be symmetric. It is known
that in this case x[k] converges asymptotically to s̄ if the weight
matrix satisfies the conditions W1 = 1 and ρ(W − 1

I
11

T ) < 1,
where ρ(·) denotes the spectral radius.

Several different methods to design the weight matrix W have
been proposed. An overview of methods to optimize the asymp-
totic convergence speed is given in [6]. Here, we use the weight
matrix W

CVX that provides the fastest asymptotic convergence for
undirected graphs; this weight matrix can be efficiently obtained
by solving a convex optimization problem. A drawback of this
weight design (termed CVX in what follows) is the requirement for
global knowledge of the network structure. An alternative to convex
optimization weight design that is extremely simple and requires
only local information about the network structure is based on the
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Fig. 1. Illustration of AC behavior for different weight designs in
terms of mean-square error versus iteration index k.

Metropolis-Hastings (MH) algorithm coming from Markov chain
theory. The MH weight matrix W

MH is designed according to

w
MH
ij =

⎧⎪⎨
⎪⎩

1
max{di,dj} , for (i, j) ∈ E ,

0 , for (i, j) �∈ E ,

1−
∑

j �=i
wMH

ij , for i = j.

Here, di denotes the degree (the number of neighbors) of node i.
Fig. 1 illustrates the convergence behavior of static AC with

W
CVX and with W

MH (and with other weight designs described
below) for the case of a WSN with I = 100 nodes; the measure-
ments here were obtained by sampling from a Gaussian distribution
N{0, 1}. It is seen that the CVX weights provide excellent asymp-
totic convergence rate, but the MH weights are clearly superior in the
transient phase (i.e., for k < 40). To improve the transient behavior
of CVX, a nonlinear AC algorithm was proposed in [13]. With this
method, the nonlinear (NL) state update is given by

x[k + 1] = W
NL[k]x[k] , (2)

where the weight W NL[k] depends on the current states and hence
renders the updates time-varying and nonlinear. More specifically,
the edge weights are given by

w
NL
ij [k] =

{
wCVX

ij f
(
xi[k]− xj [k]

)
, for i �= j,

1−
∑

j �=i
wNL

ij [k] , for i = j.

Here f(·) is a suitable nonlinear function, chosen as f(u) =
tanh(θ1u)θ2

u
with θ1θ2 ≤ 1 in [13]. The behavior of this NL

weight design is also shown in Fig. 1. It is seen that the transient
performance of NL outperforms CVX (with appropriately chosen
θ1 and θ2). However, NL is still inferior to MH in the initial phase;
furthermore, the parameters θ1 and θ2 have to be manually adapted
to the specific scenario.

3. PROPOSED SCHEME

3.1. Static Case

Motivated by the observation that MH performs best in the transient
phase while CVX is superior in the asymptotic phase, we aim at

combining the advantages of MH and CVX to obtain a weight design
that performs uniformly best for all k. To this end, we propose to
morph MH into CVX via local convex combinations in which the
coefficients depend nonlinearly on the current states. This results in
a time-varying non-linear update as in (2), with the morphed weights
given by

w
M
ij [k] =

{
(1− αij [k])w

MH
ij + αij [k]w

CVX
ij , for i �= j ,

1−
∑

j �=i
wM

ij [k] , for i = j.
(3)

where 0 < αij [k] < 1. Note that the coefficients αij [k] are time-
varying and different for each edge. MH and CVX are obtained as
special cases of (3) with αij [k] = 0 and αij [k] = 1, respectively.
It is straightforward to check that WM

1 = 1, i.e., (3) preserves the
true mean and satisfies the property that the mean is a fixed point.
The condition ρ(WM[k]− 1

I
11

T ) < 1 may be violated in the tran-
sition phase between MH and CVX. However, if our scheme should
start to diverge, the weight adaptation described below would switch
back to MH and thereby bring the algorithm back on track.

Global deterministic morphing. A very simple and intuitive choice
for the coefficients αij [k] amounts basically to using MH initially
(i.e., for k < k0, with k0 a precomputed number of iterations), and
afterwards switch to CVX. This means αij [k] = 0 for k < k0 and
αij [k] = 1 for k ≥ k0. In practice, it is advantageous to use a grad-
ual transition rather than an abrupt change, i.e., αij [k] = g[k], where
g[k] is a sigmoid-type function with 0 ≤ g[0] and limk→∞ g[k] = 1.
Here, the coefficients for all edges are identical and (3) simplifies to
W

M[k] = (1 − g[k])WMH + g[k]W CVX. Since the weights do
not depend on the current state, the AC update is time-varying but
remains linear. Due to the triangle equality ρ((1 − a)A + aB) ≤
|1− a|ρ(A) + |a|ρ(B), it follows directly that

ρ

(
W

M[k]−
1

I
11

T

)
≤ 1. (4)

The performance of the globally morphed weights with g[k] =
1

1+exp(−2(k−6))
is also shown in Fig. 1. Clearly, this scheme out-

performs both MH and CVX. While it is desirable that the transition
between MH and CVX is optimized for the specific scenario at hand,
the performance of the algorithm turns out to be rather insensitive to
the precise shape of g[k].

Local adaptive morphing. We next propose an alternative to
the global morphing described above that chooses the coefficients
αij [k] locally in an adaptive manner, i.e., depending on the current
states. The basic idea is that if the states xi[k], i = 1, . . . , I , differ
“strongly,” we are still in the transient phase and should rather use
MH; in contrast, if all states are “close” to each other, we are in
the asymptotic phase and should use CVX. To prevent additional
communication between nodes, we propose to assess the current
discrepancy of the states via the following two metrics that depend
only on the states of two neighboring nodes:

m
(1)
ij [k] =

(xi[k]− xj [k])
2

2
, (5)

m
(2)
ij [k] =

(xi[k]− xj [k])
2

x2
i [k] + x2

j [k]
. (6)

The morphing coefficients are then chosen in a local and adaptive
fashion as

αij [k] = f(m
(l)
ij [k]), l = 1, 2. (7)
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Fig. 2. Distribution of the eigenvalues of the weight matrix W [k] versus iteration index k: nonlinear AC [13] (left) and global deterministic
morphing (right). In the right-hand side, the eigenvalue distribution for k = 0 and k = 20 corresponds to MH and CVX, respectively.

where f(·) is a sigmoid-like monotonic decreasing function satis-
fying f(0) = 1. Since the morphing coefficients and thus the AC
weights depend on the current states, the overall AC update here be-
comes nonlinear. The metric m

(1)
ij [k] equals the sample variance of

the pair {xi[k], xj [k]} and has the advantage of being translation
invariant, i.e., an additive offset of both states leaves m

(1)
ij [k] un-

changed. In contrast, m(2)
ij [k] is scale invariant but not translation

invariant, i.e., a multiplicative scaling of both states does not change
m

(2)
ij [k]. A metric that is both translation invariant and scale invari-

ant does not exist.
An illustration of the performance of AC with locally morphed

weights based on the metric m(1)
ij [k] is given in Fig. 1. It is seen that

this scheme performs best among all weight design even though the
transition between MH and CVX is completely adaptive.

Interpretation. Fig. 1 reveals that our proposed method using mor-
phed AC weights combines the good transient performance of MH
and the optimal asymptotic performance of CVX. This excellent
performance can be supported by Fig. 2, which shows the average
eigenvalue distribution of the weight matrix for the case of nonlinear
AC [13] and our globally morphed weight matrix. It is seen that—
in contrast to nonlinear AC—our method initially has an eigenvalue
distribution that is strongly concentrated about zero. This implies
that the corresponding components of the state vector (i.e., which
are orthogonal to 1) are quickly attenuated. The transition to CVX
weights then minimizes the spectral radius, which in turn attenuates
the remaining components as fast as possible.

3.2. Dynamic Case

In this section we show how to apply our weight morphing scheme
to dynamic AC. In this scenario each sensor obtains a time-varying
measurement si[n], i = 1, . . . , I . The discrete-time dynamic AC
proposed in [12] offers the potential to track the mean s̄[n] of the
measurements when the latter vary so fast that performing numerous
AC iterations per sampling interval becomes infeasible. With dy-
namic AC, the update (1) is modified by incorporating the first order
difference (Δs)[n] = s[n] − s[n − 1] and the resulting modified
update is performed once per sampling interval, i.e.,

x[n+ 1] = Wx[n] + (Δs)[n] . (8)

Note that the term (Δsi)[n] basically serves as a simple means to
predict the measurement at time n + 1. For the case of temporally
constant measurements, (Δs)[n] = 0 and (8) reduces to the static
AC (1). For more details regarding dynamic AC we refer to [12]. An
extension of this algorithm uses higher-order differences (Δmsi)[n]
but entails an increased communication overhead between the sen-
sors. The optimal order m depends on the amount of time-variation
in the measurements.

The conditions imposed on the weight matrix in the static case
(see Section 2) ensure

1
T
x[n] = 1

T
s[n] ,

which in turn implies that dynamic AC achieves an asymptotically
vanishing error provided that (Δsi)[n] is independet of i (cf. [12]).
Unfortunately, the latter condition is not satisfied in the case of
noisy measurements and consequently the mean-square error (MSE)
achieved with dynamic AC is rather high.

We propose to cope with the noise and fast time-variations of
the measurements by applying our weight morphing method to dy-
namic AC, i.e., by replacing W in (8) with the time-varying mor-
phed weights in (3):

x[n+ 1] = W
M[n]x[n] + (Δs)[n] . (9)

For the morphing coefficients, we use local adaptation according to
(7). The resulting AC algorithm tends to prefer MH weights for fast
varying signal portions and low SNR while for slowly varying signal
parts and high SNR the CVX weights will be used.

4. NUMERICAL RESULTS

In our simulations, we considered a WSN with I = 100 sensors ran-
domly deployed within the unit square. The communication range
was r = λ√

I
with λ = 2 unless stated otherwise. The performance

of the various dynamic AC algorithms is assessed by the MSE

ε
2[n] =

∑I

i=1

(
xi[n] − s̄[n]

)2
E{s2i [n]}

,

possibly averaged over time.
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Fig. 3. MSE versus time for dynamic AC with different weight de-
signs and an abrupt change in the measurements.

We first consider a pseudo-static scenario in which the measure-
ments are constant for some time and then change abruptly to dif-
ferent values that again remain constant afterwards. Fig. 3 shows
the MSE ε2[n] achieved in this scenario with MH, CVX, and lo-
cal adaptive weight morphing (based on m

(1)
ij [n]). It is seen that

our proposed scheme outperforms MH and CVX and is able to cope
both with the transient and the quasi-stationary parts of the measure-
ments. In particular, while CVX weights are used after n = 30,
the adaptation underlying the morphing coefficients recognizes the
abrupt change at n = 95 and switches back from CVX to MH.

We next examine a scenario in which the sensor measurements
are noisy samples from a spatio-temporal field which is constructed
via a spatial Fourier series in which the coefficients are low-pass
processes with normalized bandwidth θc = 6 · 10−4 . Fig. 4 displays
the (time-averaged) MSE versus the SNR (averaged over 100 sce-
narios) for MH, CVX, and local adaptive weight morphing (based
on m

(2)
ij [n]). Again our proposed scheme overall performs best by

combining in a non-supervised manner the advantages of MH at low
SNR and of CVX at high SNR. Hence, in the context of distributed
averaging in unknown noise levels, our weight morphing scheme
picks the appropriate weights in an automated manner.

5. CONCLUSION

The performance of AC algorithms for distributed averaging de-
pends strongly on the weight design. This motivated us to propose
an adaptive weight morphing scheme which leads to a nonlinear AC
scheme and combines the favorable transient behavior of MH weight
design with the excellent asymptotic performance of CVX weights.
Morphed weights are advantageous also in the dynamic case to deal
with different noise levels and signal variations. Numerical simula-
tions confirmed that the AC algorithm with morphed weights leads
to the best convergence and tracking behavior both in static and dy-
namic scenarios.
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