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ABSTRACT

We consider the problem of sensor localization in wire-

less networks in a multipath environment. We propose a

distributed and cooperative algorithm based on belief prop-

agation, which allows sensors to cooperatively self-localize

with respect to a single anchor node in the network, using

range and direction of arrival measurements. In the algo-

rithm, neighboring sensors exchange limited information to

update their local mean location estimates and covariance

matrices. We show that the covariance matrix for each sensor

converges for connected networks, and its mean location esti-

mate converges if all scatters are either parallel or orthogonal

to each other. Furthermore, these estimates are asymptoti-

cally unbiased. Simulations show that cooperation amongst

neighboring nodes significantly improves the localization

accuracy.

Index Terms— distributed localization, wireless sensor

network, belief propagation, non-line-of-sight errors.

1. INTRODUCTION

A wireless sensor network (WSN) consists of many devices

(or nodes) capable of onboard sensing, computing and com-

munications. WSNs are used in industrial and commercial

applications, such as environmental monitoring and pollution

detection, event detection, and object tracking [1, 2]. In most

applications, the data collected by the sensor nodes can only

be meaningfully interpreted if it is correlated with the location

of the corresponding sensors.

Typical localization techniques are usually studied in line-

of-sight (LOS) environments. However, LOS signals do not

always exist in urban or cluttered environments, where sig-

nals usually experience multiple reflections and diffractions.

Such signals are referred to as nonline-of-sight (NLOS) sig-

nals and are commonly encountered in both indoor and out-

door environments. Distributed localization algorithms for

multipath environments were proposed in [3,4], where NLOS

error is modeled as a positive bias in range and angle mea-

surements, and its statistical characteristics are inferred by
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numerical methods, such as bootstrap sampling in [3], and

particle filters in [4]. One of the major disadvantages is that

these Bayesian inference techniques require a large number

of observations and are computationally expensive.

Instead of modeling NLOS errors in multipath environ-

ments as random biases, we can use ray tracing methods to

analyze the geometric relationship between range and angle

measurements, which produces a more accurate signal model.

However, as the number of scatterers increases, the ray-

tracing model becomes more complicated, and most current

works consider only one-bounce scattering paths [5]. Con-

sidering a similar ray tracing model, we propose a distributed

localization algorithm, where sensors exchange information

to cooperatively perform self-localization relative to a single
anchor. We give analytical proofs for the convergence of the

proposed algorithm, and show through simulation that by

exchanging limited information, all the nodes in the network

can perform localization to a good accuracy.

The rest of this paper is organized as follows. In Section 2,

we briefly describe the system model and the distributed algo-

rithm. We give convergence proofs in Section 3, and provide

simulation results in Section 4. In Section 5, we summarize

and conclude.

2. COOPERATIVE AND DISTRIBUTED
LOCALIZATION

Consider a network of M + 1 sensors, {S0, S1, · · · , SM}.

The position of Si is si � (xi, yi), where xi and yi are its

x- and y-coordinates respectively. Without loss of generality,

we assume that node S0 is the anchor with a known location

(0, 0). The objective of each Si is to perform self-localization

relative to S0. In the following, we briefly describe the sys-

tem model and the distributed localization algorithm. Due to

space limits, details for derivation of the algorithm is omitted

here and can be found in [6].

Consider two nodes Si and Sj with R LOS or NLOS paths

between them. An example of a single-bounce scattering path

is shown in Figure 1. Let drji be the distance measured by

Si along the rth path from Sj , and θrji be the corresponding

angle. Given measurements {drij , drji, θrij , θrji}Rr=1, it can be

shown that

drji = g(θrij , θ
r
ji)

T (si − sj) +�r
ji, (1)
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Fig. 1. Example for a single-bounce scattering path.

where g(θrij , θ
r
ji) =

[
sin(θr

ij)+sin(θr
ji)

sin(θr
ji−θr

ij)
;− cos(θr

ij)+cos(θr
ji)

sin(θr
ji−θr

ij)

]
for r = 1, · · · , R, and �r

ji is a Gaussian random error

with mean 0 and variance σ2 which approximates total ef-

fects of ranging and angle measurement errors. Let dji =

[d1ji, . . . , d
R
ji]

T , Gji =
[
g
(
θ1ji, θ

1
ij

)
, . . ., g

(
θRji, θ

R
ij

)]T
, and

�ji = [�1
ji, . . . , �

R
ji]

T , we model the position of Si using

si = sj +G†
ji (dji −�ji) . (2)

And the MAP estimation for si is found by maximizing the

corresponding posterior distribution with respect to si.

Generalizing the above idea to network-wide localiza-

tion, the MAP estimator for sensor locations is obtained

by maximizing the joint posterior distribution p({si}Mi=1 |
{Gji,dji}i,j). However, this is a high dimensional optimiza-

tion problem and is difficult to solve. To simplify computa-

tions and to design a distributed algorithm that localizes every

node in the network, we considered the posterior marginal

distribution of si, denoted as {bi(si)}Mi=1. An iterative algo-

rithm based on belief propagation is shown in Algorithm 1 to

calculate and maximize these posterior marginal distributions

in a distributed fashion.

3. CONVERGENCE ANALYSIS

It is well known that algorithms based on belief propagation

converge if the underlying graph is a tree. However, for a

general graph topology, convergence is poorly understood and

difficult to prove. As observed numerically in [7], when there

exists loops, BP algorithms can diverge. Nevertheless, we

establish that the covariance matrices P
(l)
i converge. We also

show that the means μ
(l)
i converge, and are asymptotically

unbiased, when all scatters are either parallel or orthogonal to

each other. In Section 4, we show numerically that we still

have convergence of the computed means in a general setting.

3.1. Convergence of covariance matrices {P(l)
i }Mi=1

We show that the covariance matrices of the local beliefs at

each node converges in any matrix norm, by making use of

Algorithm 1 Cooperative and Distributed Localization in

Multi-path Environments

1: Initialization:

2: Set the position at the anchor S0 as s0 = (0, 0).

3: Set μ
(0)
i = (0, 0) and [P

(0)
i ]−1 = 0.

4: Iteration until convergence:

5: for the lth iteration do
6: sensors Si with i = 1 : M in parallel
7: broadcast current belief b

(l−1)
i (si) to neighbors;

8: receive b
(l−1)
j (sj) from neighbors Sj , where j ∈ Bi;

9: update its belief as b
(l)
i (si) ∼ N (μ

(l)
i ,P

(l)
i ) with

[
P

(l)
i

]−1

=
∑
j∈Bi

[
W

(l−1)
ji

]−1

, (3)

μ
(l)
i = P

(l)
i

∑
j∈Bi

[
W

(l−1)
ji

]−1

ν
(l−1)
ji , (4)

where ν
(l−1)
ji = μ

(l−1)
j + G†

jidji, and W
(l−1)
ji =

σ2Σji +P
(l−1)
j with Σji = G†

ji(G
†
ji)

T .

10: estimate its position as ŝ
(l)
i = μ

(l)
i .

11: end parallel
12: end for

the following elementary results, which we do not prove. The

first lemma is from [8]. And Lemma 2 can be found in [9].

Lemma 1. If the sequence {A(l)}+∞
l=1 of positive definite ma-

trices is non-increasing, i.e., A(l) � A(l+1) for l = 1, 2, · · · ,
this sequence converges to a positive semi-definite matrix.

Lemma 2. If the matrices A and B are positive definite, then
A � B iff B−1 � A−1.

The following result shows that the covariance matrices of

the beliefs at each variable node in the factor graph converges.

Theorem 1. The covariance matrices {P(l)
i }Mi=1 of beliefs

at sensors {Si}Mi=1 in Algorithm 1 converges for connected
networks, i.e., there exists unique positive semi-definite ma-
trices {P∗

i }Mi=1 such that liml→+∞ P
(l)
i = P∗

i for all i =
1, · · · ,M .

Proof. Let σ2Σji = UT
jiDjiUji, where Uji is a unitary ma-

trix, and Dji is a diagonal matrix with non-negative entries.

Define L
(l)
ji = UjiP

(l)
j UT

ji, and let K
(l)
i =

[
P

(l)
i

]−1

. From

(3), we then have

K
(l)
i =

∑
j∈Bi

Uji

(
Dji + L

(l−1)
ji

)−1

UT
ji. (5)

We show by induction on l that K
(l)
i is non-decreasing for all

i = 1, . . . ,M . The proof for K
(1)
i � K

(0)
i is trivial. Sup-

pose K
(l)
i � K

(l−1)
i for all j. From Lemma 2, we have
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P
(l−1)
j � P

(l)
j . Since Uji is unitary for any j ∈ Bi, we

have L
(l−1)
ji � L

(l)
ji , from which we obtain Dji + L

(l−1)
ji �

Dji +L
(l)
ji . Applying Lemma 2, we have

(
Dji + L

(l)
ji

)−1

−(
Dji + L

(l−1)
ji

)−1

� 0, which together with (5) yields

K
(l+1)
i −K

(l)
i

=
∑
j∈Bi

Uji

[(
Dji + L

(l)
ji

)−1

−
(
Dji + L

(l−1)
ji

)−1
]
UT

ji.

And hence K
(l+1)
i −K

(l)
i � 0. This completes the induction,

and the claim that K
(l)
i is non-decreasing in l is now proved.

This implies that P
(l)
i is non-increasing in l. The theorem

now follows from Lemma 1, and the proof is complete.

3.2. Convergence of belief means {μ(l)
i }Mi=1

Suppose that all scatters in the environment where the sensor

nodes are positioned are such that any two scatters are either

parallel or orthogonal to each other. Without loss of general-

ity, we assume that all scatters are either horizontal or vertical.

We show that under this constraint, the mean of the belief at

each node Si converges.

Theorem 2. Suppose that all scatters are either horizontal
or vertical. Then, μ(l)

i converges for all i = 1, . . . ,M . In
addition, if {si}Mi=1 are non-random parameters, then μ

(l)
i is

an asymptotically unbiased estimator of si.

Proof. Stack {μ(l)
i }Mi=1 in (4) into a vector and write

⎡
⎢⎢⎣
μ

(l)
1
...

μ
(l)
M

⎤
⎥⎥⎦

︸ ︷︷ ︸
�U(l)

= Q(l−1)

⎡
⎢⎢⎣
μ

(l−1)
1
...

μ
(l−1)
M

⎤
⎥⎥⎦

︸ ︷︷ ︸
�U(l−1)

+H
(
IM ⊗Q(l−1)

)
Z︸ ︷︷ ︸

�A(l−1)

, (6)

where Q(l) is a 2M -by-2M matrix consisting of M × M
blocks of 2-by-2 submatrices, with the (i, j)th block being

Q(l)(i, j) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[∑
k∈Bi

W
(l)
ki

]−1

W
(l)
ki , 0 /∈ Bi, j ∈ Bi, i �= j,[

W0i +
∑

k∈Bi,k �=0 W
(l)
ki

]−1

W
(l)
ji , 0 ∈ Bi, j ∈ Bi, i �= j,

0, otherwise.

The vector Z � [Z1, · · · ,ZM ]
T

with Zi �
[(

G†
1id1i

)T
,

· · · ,
(
G†

MidMi

)T ]
, and H is a selection matrix defined as

H �
[
(eT1 ⊗ I2)

T , · · · , (eT(i−1)M+i ⊗ I2)
T , · · · , (eTM2 ⊗ I2)

T
]T

.

The vector ei is a M2 × 1 vector with all entries 0, except

a 1 at the ith entry. We show that the sequence {U(l)}+∞
l=0

converges, relying on the following properties, whose proofs

are omitted.

Lemma 3. (i) For all l ≥ 0, we have Q(l) is strictly sub-
stochastic with spectral radius ρ(Q(l)) < 1.

(ii) There exists Q∗ with spectral radius ρ(Q∗) < 1, and
such that liml→+∞ Q(l) = Q∗. Furthermore, there ex-
ists an induced matrix norm ‖·‖ such that ‖Q∗‖ < 1.

(iii) There exists a constant r < 1 such that for all l ≥ 0,∥∥Q(l)
∥∥ ≤ r.

(iv) There exists a constant c such that for all l ≥ 0,∥∥A(l)
∥∥ ≤ c.

Using induction with (6), we have

U(l) =
l∏

k=1

Q(l−k)U(0) +
l∑

m=1

m−1∏
k=1

Q(l−k)A(l−m).

From Lemma 3(iii), we have
∥∥∥∏l

k=1 Q
(l−k)

∥∥∥ ≤ rl, which

together with Lemma 3(iv), yields

∥∥∥U(l) −U(p)
∥∥∥ ≤ 2rl

∥∥∥U(0)
∥∥∥+ c

p∑
m=l

rm−1, for l ≤ p.

Therefore, {U(l)}l≥0 is a Cauchy sequence, and it converges.

Suppose {si}Mi=1 are nonrandom parameters. Substituting

G†
jidji = si−sj+G†

ji�ji into (4), and letting μ̃
(l)
i � μ

(l)
i −

si, we obtain E

[
μ̃

(l)
i

]
=
[∑

j∈Bi
W

(l−1)
ji

]−1∑
j∈Bi

W
(l−1)
ji{

E

[
μ̃

(l−1)
j

]}
, and the same argument as above shows that

E

[
μ̃

(l)
i

]
→ 0 as l → ∞. This completes the proof.

4. SIMULATION RESULTS AND DISCUSSION

Numerical simulations are conducted to validate the effective-

ness of our proposed algorithm. We consider a network with

5 nodes randomly distributed in a 10m×10m square area. We

set S0 to be the anchor with a fixed location at (0, 0). Sensors

S1 and S2 have NLOS paths to S0. Sensors S3 and S4 do not

have any paths to S0, but each has a NLOS path to S1 and

S2 respectively, and a NLOS path between themselves. The

ranging measurement errors are i.i.d. Gaussian random vari-

ables with zero mean and standard variance 3. The measure-

ment error for AOA is assumed to be uniformly distributed in

[−5◦, 5◦].
Scatters are horizontal or at angle 45◦ to the horizontal.

The performances of cooperative and pairwise localization

are compared. In pairwise localization, S3 localizes using

only measurements from S1, and S4 localizes with respect to

3127



Fig. 2. CDF of absolute errors on x-coordinates when scatters

are horizontal or at 45◦.

Fig. 3. Convergence of the mean absolute error when scatters

are horizontal or at 45◦.

S2. It can be seen from Figure 2 that S3 and S4 are localized

with larger errors than S1 and S2, and this is because errors

are accumulated over hops. In cooperative localization, S3

and S4 exchange information and incorporate measurements

from the NLOS path between themselves. As shown in Figure

2, the proposed algorithm achieves better performances with

more than 90% of the localization errors less than 2m and all

errors smaller than 3m. Similar results can be obtained for

estimation on y-coordinates.

Simulations are also conducted when scatters are at 10◦,

20◦ and 30◦ to the horizontal. Similar results as in Figure 3

are obtained and hence omitted here. These numerical results

suggest the mean of the belief at each sensor converges in

general.

5. CONCLUSION

In this paper, we propose a distributed algorithm based on

belief propagation for network-wide localization in multipath

environments. The proposed algorithm requires communica-

tions only between neighboring sensors, and has low over-

head. By utilizing both range and direction of arrival infor-

mation of the single-bounce scattering paths, we require only

one anchor in the whole network, and sensors that do not have

either LOS or NLOS paths to the anchor can be localized by

cooperating with its neighboring sensors. The convergence of

our proposed algorithm is analytically proved. Simulation re-

sults show that our proposed algorithm has better localization

accuracy compared with the non-cooperative pairwise local-

ization.
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