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Abstract—We introduce an approach to gossip algorithms
that exploits three aspects of the wireless medium: superposi-
tion, broadcast, and power control. Instead of sending pairwise
messages between neighbors on a fixed network topology, we
construct gossip algorithms in which nodes can simultaneously
recover multiple neighbors’ messages and in which nodes can
adjust the set of their neighbors by adjusting transmit power. We
present two averaging algorithms, each based on a hierarchical
clustering of the network. In the first algorithm, clusters of nodes
transmit their estimates locally and randomly select a representa-
tive node for communications at the next level. In the second, each
cluster mutually averages and then cooperatively transmits at
the next level. For path-loss environments, these schemes achieve
order-optimal or near order-optimal performance.

I. INTRODUCTION

In the distributed averaging problem, a group of nodes in

a wireless sensor network needs to compute, via distributed

interactions, the average of each node’s measurements. While

averaging is a conceptually simple problem, it can easily be

adapted to more sophisticated problems such as detection or

linear filtering over networks [1], [2].

Gossip algorithms are perhaps the most widely-known

approach to distributed averaging. Boyd et al. introduced

randomized gossip in which nodes randomly pair up with

neighbors to exchange estimates of the average [3]. Since then

several variations on gossip have been proposed. In geographic
gossip [4], nodes pair up with geographically distant nodes,

carrying out the exchange of estimates via greedy routing; this

approach accelerates convergence compared to randomized

gossip. This approach can be improved further by the intro-

duction of path averaging, in which nodes routing between an

exchanging pair average their values “along the way” [5].

Although gossip algorithms are often intended to function

in wireless sensor networks, they usually are defined over

graphs which abstract away the wireless medium. As a result,

they implicitly neglect three features intrinsic to wireless

communications: superposition, broadcast, and power control.

Instead of transmitting to or receiving from multiple nodes

simultaneously, a node typically communicates only with a

single neighbor. Furthermore, a fixed topology presupposes a

fixed transmit power, when in reality a node may adjust its

transmit power to adjust the topology.

In this paper we present algorithms for distributed averaging

that exploit the broadcast and superposition nature of wireless
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as well as the possibility of flexible topology. Our algorithms

are based on the idea of hierarchical clustering. Nodes are di-

vided geographically into clusters and mutually average within

the cluster; at the next round clusters form meta-clusters,

which then mutually average; the process continues until the

entire network has mutually averaged. In our first algorithm,

each cluster randomly chooses a single representative, which

scales up its power in order to average with neighboring

clusters. In the second algorithm each cluster forms a coop-

erative unit which exploits the inherent beamforming gain in

order to communicate more power-efficiently with neighboring

clusters.

We study the proposed algorithms for a simple path-loss

model and for networks laid out in a regular square grid.

In terms of the total energy expended in order to achieve

consensus, the non-cooperative algorithm is approximately

order-optimal for path-loss coefficients near 2. The cooperative

algorithm is precisely order-optimal for path-loss coefficients

between 2 and 4.

II. PRELIMINARIES

A. Wireless Model

Let there be N nodes in the wireless network. Each node

n ∈ {1, . . . , N} has a geographical location Ln ∈ [0, 1] ×
[0, 1]. We assume that each node n knows both N and Ln;

no other information about the network is required. At round

t, each node transmits at power Pn(t). We assume a path-loss

propagation model such that the channel gain between node

n and node m is

hnm = d(n,m)−
α
2 ,

where d(m,n) is the Euclidean distance between Ln and Lm

and α ≥ 2 is the path-loss exponent. The power received at

node m due to node n’s transmission is therefore:

Pnm(t) = h2
nmPn(t) = d(n,m)−αPn(t).

We assume a simple, SNR-based model for wireless recep-

tion. As long as the received power at node m due to node

n is above a certain threshold, we assume that node m can

recover node n’s transmission. Since we are concerned mostly

with an order-wise analysis, and since the units of energy are

arbitrary, we set this threshold at unity. Then, the set of nodes

that can decode the transmission by node n is

Rn(t) = {m|Pnm(t) > 1} = {m|Pn(t) ≥ d(n,m)α}. (1)

In our cooperative algorithm, a cluster of users will coop-

eratively transmit a single message to neighboring clusters,
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which results in a coherence gain in the received power. Let

S ⊆ {1, 2, . . . , N} be a subset of the users transmitting a

cooperative message. Due the coherence gain, the received

power at node m is

PSm =

(∑
n∈S

hnmP
1
2
n (t)

)2

. (2)

Then the set of nodes that can decode the cooperative trans-

mission by S is

RS(t) = {m|PSm(t) > 1}. (3)

B. Gossip Algorithms

In distributed averaging, each node n is initialized with a

real number zn(0); we collect these initializations into the

N -length vector z(0). The aim of a distributed averaging

algorithm is for each node to compute the average of these

initial values through the exchange of local messages:

zave =
1

N
1T z(0),

where 1 is the vector of ones and (·)T denotes the matrix

transpose. At each round t, the nodes’ estimates of the average

are represented by the N -length vector z(t). At round t each

node n broadcasts its current estimate at power level Pn(t),
and zn(t) is received at each node m ∈ Rn(t). At the end

of round t, node n forms a new estimate by taking a linear

combination of the estimates it receives:

zn(t+ 1) =
∑

m:n∈Rm(t)

wmn(t)zm(t),

where wmn(t) is the weighting placed on node m’s estimate

at node n at round t. We gather the weighting coefficients into

a matrix W(t) ∈ RN×N .

For a gossip algorithm defined by the power allocations

Pn(t) and the weighting matrices W(t), we define the ε-
averaging time as the number of gossip rounds necessary for

the dynamics to converge on consensus with high probability

and small error:

Tε = sup
z(0)∈Rn

inf

{
t : Pr

(‖z(t)− zave1‖
‖z(0)‖ ≥ ε

)
≤ ε

}
. (4)

We define the ε-averaging energy as the total energy required

to achieve consensus. It is directly related to the averaging

time:

Pε =

Tε∑
t=1

N∑
n=1

Pn(t). (5)

While each Pn[t] measures power rather than energy, Pε is

proportional to the total energy expended so long as each

transmission period is equal.

III. HIERARCHICAL AVERAGING ALGORITHMS

A. Multi-layer partitioning

In order to construct an efficient averaging algorithm, we

partition the network geographically into a hierarchy of cells,

as depicted in Figure 1. For any perfect square D, we will

Fig. 1. Hierarchical partition of the network. Each square cell is further
sub-divided into smaller cells.

construct a hierarchy that allows the network to achieve

consensus in T = �logD(N)� averaging rounds.

At the top layer, which corresponds to the final round t = T
of our averaging algorithms, there is only a single cell, which

spans the entire network, denoted by C11(T ) = [0, 1]× [0, 1].
At the next-to-top layer t = T − 1, we divide the single cells

into D equal-area cells; at t = T − 2, we divide each of the

D cells from t = T − 1 into D cells, and so forth. Thus, at

level t = T − τ , there are

#(T − τ) = Dτ =
DT

Dt
≈ N

Dt
. (6)

cells, each of which is described by

Cjk(T − τ) = {(x, y) : (j − 1)D
τ
2 ≤ x ≤ jD

τ
2 ,

(k − 1)D
τ
2 ≤ x ≤ kD

τ
2 }, (7)

where 1 ≤ j, k ≤ D
τ
2 .

Let

Sjk(t) = {n : Ln ∈ Cjk(t)} (8)

be the cluster of nodes with locations in the cell Cjk(t). Since

each Cjk(T − τ) is a square of area D−τ regardless of j, k,

the maximum distance between any two nodes in a cluster at

level t = T − τ is

M(T − τ) = (2D−τ )
1
2 , (9)

where the maximum is achieved when two nodes are on

opposite corners of the cell.

B. Non-cooperative algorithm

First we describe the non-cooperative averaging algorithm.

Rather than maintain an estimate of the average, nodes keep

an estimate of the sum; this obviates the need for each node to

know the cardinality of neighboring cells. After consensus is

achieved on the sum, each node simply divides its estimate by

N to recover the average. At round t = 1, each node transmits

its measurement zn(0) to the other nodes in its cluster. In order

to ensure that each node’s transmission, we set

Pn(1) = M(1)α = (2D1−T )
α
2 . (10)
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Each node updates its estimate by summing up all of the

transmissions from within its cluster

zn(1) =
∑

m:n,m∈Sjk(t)

zm(0).

At each subsequent round 1 < t < T , a single representative

is chosen from each cluster Sj,k(t − 1), which we denote

n∗
jk(t−1). Each representative transmits zn[t−1] at sufficient

power that its transmission can be heard by each member of

his cell, which can be ensured by setting

Pn(t) =

{
M(t)α = (2Dt−T )

α
2 , n = n∗

jk(t− 1) for some j, k

0, otherwise
.

(11)

Each node updates its estimate by adding up all of the

transmissions from within its cluster:

zn(t) =
∑

n∗
lm(t−1):n,n∗

lm(t−1)∈Sjk(t)

zn∗
lm(t−1)(t− 1).

Finally, at round T = t there is only a single cell which

spans the entire network. Each representative node transmits

zn∗
jk(t−1)(t−1) as before. Each node concludes by adding up

the transmissions from representative nodes and dividing by

N :

zn(T ) =
1

N

∑
n∗
lm(T−1):n,n∗

lm(T−1)∈Sjk(t)

zn∗
lm(T−1)(T − 1)

(12)

=
1

N

N∑
m=1

zm(0), (13)

where the second equality can easily be shown by induction.

Thus, regardless of the initial measurements or even the topol-

ogy of the network, we achieve consensus in T = �logD(N)�
rounds.

C. Cooperative algorithm

As with the non-cooperative algorithm, nodes keep an

estimate of the sum throughout, which they eventually divide

through by N . The primary difference is that, instead of

choosing a single representative from each cluster to transmit

at the next round, each cluster cooperatively transmits its

estimate of the sum to the neighboring clusters.

Just as in the non-cooperative algorithm, at round t = 1
each node transmits zn[0] at power

Pn(1) = M(1)α = (2D1−T )
α
2 (14)

and computes the estimate

zn(1) =
∑

m:n,m∈Sjk(1)

zm(0). (15)

Once again, each node in the same cluster Sjk(1) has the same

estimate.

At round 1 < t < T , each cluster from round t − 1
cooperatively transmits its estimate zn(t) to its new cluster. We

choose each user’s power to be constant. Since the worst-case

distance between users at level t is M(t), manipulations on

(2) and (3) show that, in ofrder for each cluster to successfully

transmit to the cluster members at level t, it is sufficient to

choose

Pn(t) =
M(t)α

|Sjk(t− 1)|2 =
(2Dt−T )

α
2

|Sjk(t− 1)|2 , (16)

for each n ∈ Sjk(t − 1). Since, for each n ∈ Sjk(t − 1)
the estimate is the same, we denote this common estimate

by zSi(t−1)(t− 1). After receiving the transmissions from the

other sub-clusters, each user updates its estimate by taking the

sum

zn(t) =
∑

Sjk(t−1)⊂Sj(t)

zSjk(t−1)(t− 1). (17)

Finally, at round T = t each node sums up the transmissions

from neighboring clusters as in previous rounds, but divides

by N to recover the average instead of the sum:

zn(T ) =
∑

Sjk(T−1)⊂Sj(T )

zSjk(T−1)(T − 1) (18)

=
1

N

N∑
m=1

zm(0), (19)

where the second equality can again be shown by induction.

In this case the algorithm does depend on topology, since the

transmit power at each stage is a function of the cardinality

of each cluster. However, as before the network achieves

consensus in T = �logD(N)� rounds.

IV. PERFORMANCE ANALYSIS

In this section we examine the performance of the hierar-

chical gossip algorithms proposed in the previous section. We

are interested in two performance metrics: the averaging time,

as defined in (4), and the total averaging energy, as defined in

(5). When necessary, we will focus our attention on the square

grid, in which the N nodes are arranged into a uniformly-

spaced
√
N ×√

N grid. In this case, we can lower-bound the

averaging time and averaging error.

Theorem 1: For the square grid, the averaging time and

averaging energy are bounded below as:

Tε ≥ 1 (20)

Pε ≥ N1−α
2 . (21)

Furthermore, Tε = 1 is achievable regardless of topology.

Proof: The bound on Tε holds trivially. To show that it

is achievable, note that we always can choose each node’s

transmit power high enough that the entire network lies in its

neighborhood. Each user therefore can transmit its estimate to

the entire network in one round, and each user can take the

average and arrive at exact consensus.

To prove the bound on Pε, note that each user must transmit

at least once in order for the network to achieve consensus;

furthermore, this transmission must be heard by at least one

other node. Since the square grid is a
√
N ×√

N grid on the

unit square, the minimum distance between any two nodes is

d(m,n) ≥ (
√
N−1)−1 ≥ N− 1

2 . The power required to reach

this nearest neighbor is therefore Pn(t) ≥ N−α
2 . Since each
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node must transmit at least once, the overall energy consumed

is at least Pε ≥ N1−α
2 .

Next, we derive the averaging time and averaging energy

for the non-cooperative algorithm.

Theorem 2: For any network, the averaging time and av-

eraging energy of the non-cooperative hierarchical algorithm

scale as:

Tε = O(log(N)) (22)

Pε = O(1). (23)

Proof: The bound on Tε holds by construction of the

hierarchy of partitions. To show the bound on Pε, we substitute

the transmit powers of (10) and (11) into (5):

Pε =

Tε∑
t=1

N∑
n=1

Pn[t] (24)

= NPn[1] +
T∑

t=2

N∑
n=1

Pn[t], (25)

where the second equality is due to the fact that each node

transmits with identical power at the first round, and for T =
�logD(N)� as before. Continuing, we get

Pε = N(2D1−T )
α
2 +

T∑
t=2

#(t)(2Dt−T )
α
2 (26)

= N2
α
2 D ·D−Tα

2 +
T∑

t=2

DT−t2
α
2 D

(t−T )α
2 (27)

≈ 2
α
2 DN1−α

2 + 2
α
2 N1−α

2

T∑
t=1

D(α
2 −1)t (28)

= 2
α
2 DN1−α

2 + 2
α
2 N1−α

2

(
1−D(α

2 −1)T

1−D
α
2 −1

)
(29)

≈ 2
α
2 DN1−α

2 + 2
α
2 N1−α

2

(
N

α
2 −1 − 1

D
α
2 −1 − 1

)
(30)

= O(N1−α
2 ) +O(1) = O(1), (31)

where we have used DT ≈ N throughout.

For the cooperative algorithm, we can prove a better result if

we restrict ourselves to the grid network.

Theorem 3: For the grid network with 2 < α < 4, the

performance of the cooperative algorithm scales as

Tε = O(log(N)) (32)

Pε = O(N1−α
2 ). (33)

Proof: As in the previous theorem, the bound on Tε

follows by construction. For Pε, we first need to compute

the cell cardinalities Sjk(t). For the grid graph the nodes are

regularly spaced, so the cardinality of each cluster is simply

|Sjk(t)| = N/#(t) for any valid j, k. Combining this fact

with (16), we can compute the averaging energy:

Pε =

Tε∑
t=1

N∑
n=1

Pn[t] (34)

= N
T∑

t=1

(2Dt−T )
α
2

N2/#2(t)
(35)

= 2
α
2 D−αT

2

T∑
t=1

D
αt
2 #2(t)

N
(36)

≈ 2
α
2 N−α

2

T∑
t=1

D
αt
2

D2t
(37)

= 2
α
2 N1−α

2

T∑
t=1

D(α
2 −2)t (38)

= 2
α
2 N1−α

2

(
1−D(α

2 −2)T

1−D
α
2 −2

)
(39)

= 2
α
2 N1−α

2

(
1−N

α
2 −2

1−D
α
2 −2

)
(40)

= O(N1−α
2 ), (41)

where we used #(t) ≈ N/Dt and where the last equality is

due to the fact that α < 4, meaning that the final term in (40)

approaches a constant.

V. DISCUSSION

A few comments on our results are in order. We first note

that the cooperative algorithm is order-optimal for the grid

graph for a rather realistic set of path-loss exponents. We also

point out that a similar result holds in high-probability for

randomly-generated graphs. Also, while the non-cooperative

algorithm does not achieve the optimal scaling law for any

path-loss exponent, it is approximately order-optimal for path-

loss near to two; furthermore, since it does not depend on a

coherence gain, it may be the more practical approach.
Finally, we have taken a somewhat simplistic look at the

wireless medium. In practice, multi-user techniques, such as

the mutual broadcast framework of [6], are required to ensure

that multiple messages can be received simultaneously. Further

investigation into gossip algorithms that consider fading and

outage are required before our proposed techniques can be

realized in practical sensor networks.
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