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ABSTRACT

The distributed estimation of the average value of the sensors initial
measures is one of the most popular issues in the Wireless Sensor
Networks (WSN) area. In WSNs, broadcasting data seems natural
to exchange information quickly because of the broadcast nature of
the Wireless channel. Nevertheless, although broadcast-based algo-
rithms converge faster than pairwise algorithms, the obtained con-
sensus is not necessarily the true average. By the means of additional
side-information exchange, we propose a broadcast-based algorithm
converging rapidly to the true average. The convergence of this new
algorithm is established and its convergence speed is exhibited. We
remark that the proposed algorithm outperforms the existing ones.

Index Terms— distributed estimation, averaging, sensor net-
work, broadcast, consensus

1. INTRODUCTION

Distributed algorithms over Wireless Sensors Networks (WSN) have
been widely studied since the pioneer work in [1]; in particular, a lot
of results have been obtained for the problem of averaging [2, 3].
However, only a few averaging algorithms take benefit of the broad-
cast nature of the wireless communication channels [4, 5]. In [4],
at each clock tick, one (randomly chosen) sensor broadcasts its in-
formation to all its neighbors, then each neighbor averages its own
value with the received one. With such an algorithm, the network’s
global sum is not preserved. This implies that the corresponding up-
date matrix is not doubly-stochastic, and so preventing the algorithm
to converge to the true average.

Recently, to overcome this drawback, [5] has proposed a new
broadcast-based algorithm relying on the transmission of two vari-
ables (instead of one) at each clock tick; nevertheless, no conver-
gence analysis was provided. In the literature, some algorithms have
efficiently overcome the doubly-stochasticity restriction in a more
promising way of the update matrix by introducing the principle of
the weighted gossip [6, 7]. In such a scheme, the sensors exchange
two variables: the first one represents the sum of the received in-
formation while the second one represents the importance level of
the received information. In [6], such a weighted gossip principle
is applied to a wired synchronous network without feedback. The
absence of feedback leads to non doubly-stochastic update matrix.
In [7], this principle is applied to wireless asynchronous network
without feedback: actually, the (randomly chosen) sensor sends its
variables to one (and only one) neighbor which does not send back
its own variables.
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In this paper, we thus propose to build an algorithm (called
Broadcast based Weighted Gossip -BWGossip-) relying on the
weighted gossip principle and taking benefit of the broadcast na-
ture of the channel. Our proposed algorithm gathers the respective
benefit of the broadcast approach (fast convergence speed) and of the
weighted gossip approach (the true consensus). The main contribu-
tion of the paper is twofold: the algorithm design and its theoretical
performance analysis.

The paper is organized as follows: in Section 2, we introduce
our broadcast-based weighted gossip algorithm. In Section 3, we
prove that the proposed algorithm converges to the true average. In
Section 4, we prove that the square error is upper-bounded by an ex-
ponentially decreasing function with high probability. In Section 5,
we provide a heuristic improvement to our algorithm by modify-
ing the sensor clocks in a distributive manner without any additional
cost. Our results are numerically illustrated in Section 6. Finally
Section 7 is devoted to concluding remarks.

2. PROPOSED ALGORITHM

2.1. Signal Model

Let us consider a N -sensors network modeled by an unweighted
undirected graph G = (V,E) where V is the set of vertices/sensors
(|V | = N ) and E is the set of edges/perfect links between the sen-
sors. We assume G is connected. Each sensor i may exchange data
with its neighborhood Ni = {j ∈ V |(i, j) ∈ E}. Let di = |Ni|
denotes the degree of the sensor i. We also define A the so-called
adjacency matrix of the graph, D = diag(d1, · · · , dN ) the degree
matrix and the Laplacian matrix L = D−A [8].

Each sensor i has its own independent Poisson clock of param-
eter λi. At first, we will consider that all λi are identical and equal
to λ, which is equivalent to a global clock of parameter Nλ and uni-
form selection of the awaking sensor. We will note t the instant of
the t-th tick of the global clock. At t = 0, the sensor i only knows
its individual measure xi(0). Let xave = 1/N

∑N

i=1 xi(0) be the
average value of the initial measurements. At time t and sensor i,
the estimated average value is denoted by xi(t). The purpose of an
averaging algorithm is that xi(t) goes to xave when t goes to infinity
for each sensor i.

2.2. Broadcast based Weighted Gossip algorithm

Like in [6, 7], the sensor i will update two local values si(t) and
wi(t) (at time t) whereas, in standard gossip algorithm, the sensor
i updates directly xi(t). More precisely, si(t) and wi(t) represent
the sum of the received information and its weight related to how
much information is passed through respectively. In the sequel, we
denote s(t) = [s1(t), · · · , sN (t)]T , w(t) = [w1(t), · · · , wN (t)]T

3117978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



and x(t) = [x1(t), · · · , xN (t)]T where (.)T stands for the matrix
transpose.

The proposed algorithm is initialized as follows

• s(0) = x(0)

• w(0) = 1

with 1 the column vector composed by N ones.
At time t, the vector of average estimates is obtained by x(t) =

s(t)/w(t) where the division is done element-wise, and where s(t)
and w(t) are updated as follows :
assuming that, at time t, the sensor i wakes up

� Sensor i broadcasts
(

si(t)
|Ni|+1

; wi(t)
|Ni|+1

)
� At sensors in the neighborhood Ni, we have:{

sj(t+ 1) = sj(t) +
si(t)

|Ni|+1

wj(t+ 1) = wj(t) +
wi(t)
|Ni|+1

, ∀j ∈ Ni.

� At sensor i, we have :{
si(t+ 1) = si(t)

|Ni|+1

wi(t+ 1) = wi(t)
|Ni|+1

� All other sensors stay idle.

Using the matrix formalism, the proposed algorithm can be re-
written as follows{

s
T (t) = s

T (t− 1)K(t) = x
T (0)P(t)

w
T (t) = w

T (t− 1)K(t) = 1
T
P(t)

(1)

where P(t) = K(1)K(2) . . .K(t), K(t) is equal to Ki if the sen-
sor i is active at time t, and

Ki = I− eie
T
i (I+D)−1

L (2)

with ei the i-th canonical vector. Notice that, albeit the matrix for-
malism is identical to [6, 7], the algorithms are different since the
matrices Ki are different.

One can easily check that K(t) is row-stochastic (i.e., K(t)1 =
1) which leads to the following mass-conservation property{ ∑N

i=1 si(t) =
∑N

i=1 xi(0) = Nxave∑N

i=1 wi(t) = N.
(3)

3. CONVERGENCE

One can straightforwardly check that the set of matrices {K(t)}t>0

satisfies the following properties.

P1) These matrices are row-stochastic non-negative matrices with
positive diagonals.

P2) The sequence of these matrices is i.i.d. 1.

We also have

P3) E [K] is a primitive matrix.

To prove the previous property, we firstly lower-bound E[K] as fol-
lows

E[K] =
1

N

N∑
i=1

I− eie
T
i + eie

T
i

[
(I+D)−1 (A+ I)

]

≥
N − 1

N
I+

1

(dmax + 1)N
(A+ I) ≥ 0

1because at each global time t, a sensor (hence a matrix) is chosen uni-
formly as they have independent Poisson clocks with the same parameter λ.

where ≥ stands for the element-wise inequality and dmax denotes
the maximum degree of all the vertices. Since A is the adjacency
matrix of a connected graph, ∃m > 0, (I + A)m > 0. Hence, for
the same m, E[K]m ≥ 1/(dmaxN + N)m(I + A)m > 0, which
implies that E[K] is a primitive matrix.

In [7] (Theorem 4.1), it is proven that any weighted gossip algo-
rithm such that P1, P2, and P3 hold converges to the true average.
Therefore our proposed algorithm converges to xave as t goes to
infinity.

4. CONVERGENCE SPEED

In this section, we will put the main contributions of the paper cor-
responding to the analysis of the Square Error (SE) of the proposed
algorithm. We will prove that the SE is upper-bounded by an ex-
ponentially decreasing function with high probability. The conver-
gence rate of this function is also exhibited.

First of all, one can easily remark that

|xi(t)− xave|
2 =

|si(t)− xavewi(t)|
2

wi(t)2

=

∣∣∣∑N

j=1 xj(0)
(
Pji(t)−

1
N

∑N

l=1 Pli(t)
)∣∣∣2

wi(t)2
.

By lower bounding wi(t) with its minimum and using Cauchy-
Schwartz inequality, we obtain that

SE(t) = ‖x(t)− xave1‖
2
2 =

N∑
i=1

|xi(t)− xave|
2

≤ Ψ1(t)Ψ2(t) (4)

where Ψ1(t) =
‖x(0)‖22

|min
k

wk(t)|2

Ψ2(t) =

N∑
i=1

N∑
j=1

∣∣∣∣(PT (t)(I− J)
)
ij

∣∣∣∣
2

with J = (1/N)11T .
In the sequel, we will prove, on the one hand, that Ψ1(t) is

bounded with high probability and, on the other hand, that E[Ψ2(t)]
goes exponentially to zero when the number of iterations goes to
infinity.

We prove the following theorem meaning that it is unlikely
Ψ1(t) becomes very large, so a sensor talks too much compared to
the other ones.

Theorem 1.
Ψ1(t) = OP (1)

where Xn = OP (Yn) stands for ∀δ > 0, ∃Cδ such that ∀n,
P{|Xn| ≥ Cδ|Yn|} < δ.

Proof. As in [6], in order to lower bound mini wi(t), we con-
sider a time t0 and a node n0 whose weight is greater than 1
(there is obviously one because of the mass conservation ex-
hibited in Eq. (3)). We know from [9] that the expectation of
the diffusion time td (that is the time for any node to dissemi-
nate its information to the whole network) while broadcasting is
E[td] ≤ ΔN + N(Δ − 1) ln ((N − 1)/(Δ− 1)) = tmax with Δ
the diameter of the graph. Hence, by Markov’s inequality we know
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that the diffusion time is bounded in probability which means that at
time t = t0+td, all the sensors will be informed with a small portion
of the weight of n0 which is greater than α = (dmax + 1)−td > 0
because at each iteration the weights can be at most divided by
dmax + 1. Finally, let us remark that at t = 0, all the sensors have
weight 1 hence the established relation is true for all t. So, for all
t > 0, all weights will be greater than α > 0 with high probability
so Ψ1(t) is bounded with high probability.

Our objective now is to find the behavior of Ψ2(t) when t goes
to infinity. Actually, we will prove that Ψ2(t) is upper-bounded by
an exponentially decreasing function with high probability. To do
that, let us focus on the analysis of E[Ψ2(t)]. Let us introduce

Ξ(t) = (I− J)P(t)⊗ (I− J)P(t) (5)

where ⊗ stands for the Kronecker product. Ψ2(t) is obviously the
sum of the ((PT (t) (I− J))ij)

2 which are coefficients of the ma-
trix Ξ(t). Consequently, if E[Ξ(t)] vanishes exponentially to zero,
E[Ψ2(t)] also does at least at the same speed. Therefore, we will
focus on E[Ξ(t)].

Using basic properties of the Kronecker product, we have

Ξ(t) = Ξ(t− 1). (K(t)⊗K(t))

then, operating the mathematical expectation given the natural
filtration of the past events Ft−1 enables us to obtain that

E [Ξ(t)|Ft−1] = Ξ(t− 1).E [K⊗K] .

Finally, remarking that Ξ(t)1̃ = 0 with 1̃ = 1⊗ 1 leads to

E [Ξ(t)|Ft−1] = Ξ(t− 1).
(
E [K⊗K]− 1̃v

T
)

and then E [Ξ(t)] = Ξ(0).
(
E [K⊗K]− 1̃v

T
)t

(6)

for any vector v and with Ξ(0) = (I− J) ⊗ (I− J). This enables
us to prove the following result.

Lemma 1. If there is a vector v such that ρ
(
E [K⊗K]− 1̃v

T
)
<

1, then E [Ξ(t)] converges to zero as t goes to infinity.

Proof. For all matrix norms, we can apply the submultiplicative in-
equality on Eq. (6) and follow the proof of Theorem 5.6.12 in [10]
to obtain the result.

By remarking that (I− J)P(t) = (I− J)P(t) (I− J),
Eq. (5) leads to the following result

E [Ξ(t)] = ([(I− J)⊗ (I− J)] .E [K⊗K])t . (7)

Lemma 2. E [Ξ(t)] converges to zero as t goes to infinity if and only
if ρ (((I− J)⊗ (I− J))E [K⊗K]) < 1.

Proof. Given Eq. (7), E [Ξ(t)] can be written as M
k where M is

an N ×N real matrix. Then, using directly Theorem 5.6.12 in [10]
leads to the result.

The above lemmas enable us to see that the convergence of
E [Ξ(t)] is closely related to the spectrum of E [K⊗K].

Lemma 3. If K is as in Eq. (2), then it exists a vector v such that
ρ
(
E [K⊗K]− 1̃v

T
)
< 1.

Proof. By construction, E[K ⊗ K] is a non-negative matrix. It is
also a primitive matrix. Indeed, (E[K ⊗ K])N ≥ (

∏N

i=1 Ki) ⊗

(
∏N

i=1 Ki) ≥ 0. Let us remark that
∏N

i=1 Ki ≥ (1/(dmax +

1))N [I + A] ≥ 0. As A is the adjacency matrix of a connected
graph, we know that it is irreducible so ∃m′ ∈ N,m′ < N − 1 :

(I + A)m
′

> 0. So, by taking m = Nm′, (E [K⊗K])m > 0
which means that E [K⊗K] is primitive.
As E [K⊗K] is a row-stochastic non-negative matrix, its spectral
radius is 1 (see Lemma 8.1.21 in [10]). Moreover, it is easy to see
that 1 is an eigenvalue associated with the eigenvector 1̃ and by the
Peron-Froebenius theorem, we know that this eigenvalue has multi-
plicity 1. So, as this matrix is primitive, 1 is the unique eigenvalue
of maximal modulus and its eigenspace is spanned by 1̃.
By using the Jordan normal form and the simple multiplicity of 1,
we know that i) it exists a vector v1 equal to the left eigenvector
corresponding to the eigenvalue 1, and ii) that the eigenvalues of
E [K⊗K]− 1̃v

T
1 are exactly the eigenvalues of E [K⊗K] except

for the eigenvalue 1 which is now 0. As a consequence, the modulus
of the eigenvalues of E [K⊗K]− 1̃v

T
1 is strictly lower than 1.

Putting Lemmas 3, 1 and 2 together, we get :

ρ (((I− J)⊗ (I− J))E [K⊗K]) < 1. (8)

We are now able to find an upper bound for E[Ψ2(t)] decreasing
exponentially to zero.

Theorem 2. There is a constant C > 0 such that ∀ε > 0

∀t > 0, E[Ψ2(t)] ≤ C (Γ + ε)t

with Γ = ρ (((I− J)⊗ (I− J)) .E[K⊗K]).

Proof. From Eq. (7) and by using Lemma 5.6.13 in [10] and the ma-
trix norm submultiplicativity, we obtain that there exists a constant
C′ > 0 such that ∀t > 0, ∀(i, j) ∈ {1, · · · , N}2,

(E [Ξ(t)])ij ≤ C′ (ρ (((I− J)⊗ (I− J)) .E[K⊗K]))t .

As E[Ψ2(t)] is a sum of N2 elements of E [Ξ(t)], we have

E[Ψ2(t)] ≤ N2C′ (ρ (((I− J)⊗ (I− J)) .E[K⊗K]) + ε)t .

which concludes the proof.

By using Markov’s inequality on Theorem 2, we directly obtain
the following theorem.

Theorem 3. For any ε > 0, we have

Ψ2(t) = OP

(
(Γ + ε)t

)
.

In Theorem 3, one can choose ε as small as possible2. Thus, as
Γ < 1 (see Eq. (8)), Ψ2(t) vanishes exponentially with high prob-
ability. Combining Eq. (4), Eq. (8), Theorem 1, Theorem 3 and an
Union’s bound leads to the main result of this paper.

Theorem 4. There exists 0 < Γ < 1 such that ∀ε > 0

SE(t) = OP

(
(Γ + ε)t

)
.

Roughly speaking (i.e., by neglecting ε), one can write that
SE(t) 	 exp{−| log(Γ)|t} where a 	 b stands for ”a is less or
equal to a term proportional to b with high probability”. The term
| log(Γ)| corresponds to the convergence slope. Concerning our
BWGossip algorithm, we thus have exhibited a lower-bound of its
convergence slope.

2but one cannot choose ε = 0 because even if ‖|Mt‖| behaves like
ρ(M)t asymptotically for any matrix norm ‖| • ‖|, it is not necessary true
for its coefficients (see p.299 in [10]).
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5. AN INTUITIVE IMPROVEMENT: CLOCK CONTROL

So far, all the Poisson coefficients of the clocks were identical. This
means that all sensors were waking up uniformly and independently
from their past actions. Intuitively, it would be more logical that a
sensor talking a lot became less active during a long period.
Thanks to our BWGossip algorithm, each sensor knows whether
it talks frequently or not (without additional cost) through its own
weight value. Indeed, the more a sensor talks, the smaller its weight
is. Therefore, our idea is to control the Poisson coefficient of each
sensor with respect to their weight. We thus propose to consider the
following rule for each Poisson coefficient

λi(t) = α+ (1− α)wi(t)

where α ∈ (0, 1) is a tuning coefficient. Notice that the global clock
remains unchanged since ∀t > 0,

∑N

i=1 λi(t) = N . The network
does not so communicate more, but the talking sensors are just bet-
ter chosen. The complexity of the algorithm is the same because the
sensor whose weight changes has just to relaunch its Poisson clock.
Even if the convergence and the convergence speed of the BWGos-
sip with clock improvement have not been formally established, our
simulations (see Fig. 1) show that it also converges exponentially to
the average with higher speed if α is well chosen.

6. SIMULATIONS

In Figure 1, we plot the normalized mean square error for various av-
eraging algorithms versus the number of clock ticks when 100 sen-
sors are selected in a Random Geographic Graph [11] with a radius
r =

√
4 log(N)/N . As already remarked, the Broadcast Gossip

[4] does not converge to the average but decreases rapidly during
the first iterations. The algorithm introduced by [5] has quite poor
performance compared to the Random Gossip [2]. The BWGossip
is clearly the fastest one, especially when the clock control manage-
ment operates with appropriate α. In Figure 2, we plot the theoret-
ical upper-bound of the convergence slope | log(Γ)| derived in The-
orem 2 and the convergence slope obtained by linear regression on
the logarithm of the empirical mean squared error versus the number
of sensors N (in Fig. 1(a), the BWGossip MSE in log scale is almost
linear for t large enough suggesting the exponential decreasing of
the MSE). We observe a very good agreement.

7. CONCLUSION

We provided a new averaging algorithm over Wireless Sensor Net-
works combining the speed of the broadcast-based algorithms and
the convergence of the pairwise-based algorithm. We especially gave
a good approximation of the convergence speed.
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