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ABSTRACT

The problem of clock offset estimation in a two-way timing

exchange regime is considered when the likelihood function

of the observation time stamps is exponentially distributed. In

order to capture the imperfections in node oscillators, which

render a time-varying nature to the clock offset, a novel

Bayesian approach to the clock offset estimation is proposed

using a factor graph representation of the posterior density.

Message passing using the max-product algorithm yields a

closed form expression for the Bayesian inference problem.

Index Terms— Clock offset, factor graphs, message

passing, max-product algorithm

1. INTRODUCTION

Clock synchronization in wireless sensor networks (WSN)

is a critical component in data fusion and duty cycling, and

has gained widespread interest in recent years [1]. Most of

the current methods consider sensor networks exchanging

time stamps based on the time at their respective clocks [2].

In a two-way timing exchange process, adjacent nodes aim

to achieve pairwise synchronization by communicating their

timing information with each other. After a round of N mes-

sages, each node tries to estimate its own clock parameters.

A representative protocol of this class is the timing-sync pro-

tocol for sensor networks (TPSNs) which uses this strategy in

two phases to synchronize clocks in a network [3].

The clock synchronization problem in a WSN offers a nat-

ural statistical signal processing framework [4]. Assuming an

exponential delay distribution, several estimators were pro-

posed in [5]. It was argued that when the propagation delay d
is unknown, the maximum likelihood (ML) estimator for the

clock offset θ is not unique. However, it was shown in [6] that

the ML estimator of θ does exist uniquely for the case of un-

known d. The performance of these estimators was compared

∗The work of A. Ahmad and E. Serpedin is supported by Qtel.
†The work of D. Zennaro is partially supported by an “A. Gini” fellowship

and has been performed while on leave at Texas A&M University, College

Station, TX (USA).
‡An extended version of this work has been submitted to IEEE Transactions

on Information Theory.

with benchmark estimation bounds in [7]. A common theme

in the aforementioned contributions is that the effect of pos-

sible time variations in clock offset, arising from imperfect

oscillators, is not incorporated and hence, they entail frequent

re-synchronization requirements.

In this work, assuming an exponential distribution for the

network delays, a closed form solution to clock offset estima-

tion is presented by considering the clock offset as a random

Gauss-Markov process. Bayesian inference is performed us-

ing factor graphs and the max-product algorithm.

2. SYSTEM MODEL

By assuming that the respective clocks of a sender node S and

a receiver node R are related by CR(t) = θ + CS(t) at real

time t, the two-way timing message exchange model at the

kth instant can be represented as [5] [6]

Uk = d+ θ +Xk, Vk = d− θ + Yk (1)

where d represents the propagation delay, assumed symmetric

in both directions, and θ is offset of the clock at node R rela-

tive to the clock at node S. The network delays, Xk and Yk,

are the independent exponential random variables. By further

defining ξ
Δ
= d + θ and ψ

Δ
= d − θ, the model in (1) can be

written as

Uk = ξ +Xk, Vk = ψ + Yk (2)

for k = 1, . . . , N . The imperfections introduced by envi-

ronmental conditions in the quartz oscillator in sensor nodes

result in a time-varying clock offset between nodes in a WSN.

In order to sufficiently capture these temporal variations, the

parameters ξ and ψ are assumed to evolve through a Gauss-

Markov process given by

ξk = ξk−1 + wk, ψk = ψk−1 + vk for k = 1, . . . , N

where wk and vk are i.i.d such that wk, vk ∼ N (0, σ2).
The goal is to determine precise estimates of ξ and ψ in the

Bayesian framework using observations {Uk, Vk}Nk=1. An es-

timate of θ can, in turn, be obtained as

θ̂ =
ξ̂ − ψ̂

2
. (3)
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Fig. 1. Factor graph representation of posterior density (4)

3. A FACTOR GRAPH APPROACH

The posterior pdf can be expressed as

f(ξ,ψ|U ,V ) ∝ f(ξ,ψ)f(U ,V |ξ,ψ)

= f(ξ0)

N∏
k=1

f(ξk|ξk−1)f(ψ0)

N∏
k=1

f(ψk|ψk−1)

·
N∏
k=1

f(Uk|ξk)f(Vk|ψk) (4)

where uniform priors f(ξ0) and f(ψ0) are assumed. Define

δkk−1
Δ
= f(ξk|ξk−1) ∼ N (ξk−1, σ

2), νkk−1
Δ
= f(ψk|ψk−1) ∼

N (ψk−1, σ
2), fk

Δ
= f(Uk|ξk), hk Δ

= f(Vk|ψk), where the

likelihood functions are given by

f(Uk|ξk) = λξ exp (−λξ(Uk − ξk)) I(Uk − ξk)

f(Vk|ψk) = λψ exp (−λψ(Vk − ψk)) I(Vk − ψk) . (5)

The factor graph representation of the posterior pdf is shown

in Fig. 1. The factor graph is cycle-free and inference by

message passing is indeed optimal. In addition, the two factor

graphs shown in Fig. 1 have a similar structure and hence,

message computations will only be shown for the estimate

ξ̂N . Clearly, similar expressions will apply to ψ̂N .

The message updates in factor graph using max-product

can be computed as follows

mfN→ξN = fN , mξN→δNN−1
= fN

mδNN−1→ξN−1
∝ max

ξN
δNN−1 ·mξN→δNN−1

= max
ξN

1√
2πσ2

exp

(−(ξN − ξN−1)
2

2σ2

)
· exp (λξξN ) I(UN − ξN )

which can be rearranged as

mδNN−1→ξN−1
∝ max
ξN≤UN

exp
(
Aξ,Nξ

2
N +Bξ,Nξ

2
N−1+

Cξ,NξNξN−1 +Dξ,NξN
) (6)

where

Aξ,N
Δ
= − 1

2σ2
, Bξ,N

Δ
= − 1

2σ2

Cξ,N
Δ
=

1

σ2
, Dξ,N

Δ
= λξ . (7)

Let ξ̄N be the unconstrained maximizer of the exponent in the

objective function above, i.e.,

ξ̄N = argmax
ξN

(
Aξ,Nξ

2
N +Bξ,Nξ

2
N−1 + Cξ,NξNξN−1+

Dξ,NξN
)
.

This implies that

ξ̄N = −Cξ,NξN−1 +Dξ,N

2Aξ,N
. (8)

If ξ̄N > UN , then the estimation problem is solved, since

ξ̂N = UN . However, if ξ̄N ≤ UN , the solution is ξ̂N = ξ̄N .

Therefore, in general, we can write

ξ̂N = min
(
ξ̄N , UN

)
.

Notice that ξ̄N depends on ξN−1, which is undetermined at

this stage. Hence, we need to further traverse the chain back-

wards. Assuming that ξ̄N ≤ UN , ξ̄N from (8) can be plugged

back in (6) which after some simplification yields

mδNN−1→ξN−1
∝ exp

{(
Bξ,N − C2

ξ,N

4Aξ,N

)
ξ2N−1−

Cξ,NDξ,N

2Aξ,N
ξN−1

}
.

(9)

Similarly the message from the factor δN−1
N−2 to the variable

node ξN−2 can be expressed as

mδN−1
N−2→ξN−2

∝ max
ξN−1≤UN−1

δN−1
N−2 ·mξN−1→δN−1

N−2

=max
ξN−1

1√
2πσ2

exp

(
− (ξN−1 − ξN−2)

2

2σ2

)

· exp
{(

Bξ,N − C2
ξ,N

4Aξ,N

)
ξ2N−1 −

Cξ,NDξ,N

2Aξ,N
ξN−1

}

· exp (λξξN−1) I(UN−1 − ξN−1) .

The message above can be compactly represented as

mδN−1
N−2→ξN−2

∝ max
ξN−1≤UN−1

exp(Aξ,N−1ξ
2
N−1+

Bξ,N−1ξ
2
N−2 + Cξ,N−1ξN−1ξN−2 +Dξ,N−1ξN−1)

(10)

where

Aξ,N−1
Δ
= − 1

2σ2
+Bξ,N − C2

ξ,N

4Aξ,N
,

Bξ,N−1
Δ
= − 1

2σ2
, Cξ,N−1

Δ
=

1

σ2

Dξ,N−1
Δ
= λξ − Cξ,NDξ,N

2Aξ,N
.
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Proceeding as before, the unconstrained maximizer ξ̄N−1 of

the objective function above is given by

ξ̄N−1 = −Cξ,N−1ξN−2 +Dξ,N−1

2Aξ,N−1

and the solution to the maximization problem (10) is ex-

pressed as

ξ̂N−1 = min
(
ξ̄N−1, UN−1

)
.

Again, ξ̄N−1 depends on ξN−2 and therefore, the solution de-

mands another traversal backwards on the factor graph repre-

sentation in Fig. 1. By plugging ξ̄N−1 back in (10), it follows

that

mδN−1
N−2→ξN−2

∝

exp

{(
Bξ,N−1 −

C2
ξ,N−1

4Aξ,N−1

)
ξ2N−2 −

Cξ,N−1Dξ,N−1

2Aξ,N−1
ξN−2

}

(11)

which has a form similar to (9). It is clear that one can keep

traversing back in the graph yielding messages similar to (9)

and (11). In general, for i = 1, . . . , N − 1, we can write

Aξ,N−i
Δ
= − 1

2σ2
+Bξ,N−i+1 −

C2
ξ,N−i+1

4Aξ,N−i+1

Bξ,N−i
Δ
= − 1

2σ2
, Cξ,N−i

Δ
=

1

σ2

Dξ,N−i
Δ
= λξ − Cξ,N−i+1Dξ,N−i+1

2Aξ,N−i+1

(12)

and

ξ̄N−i = −Cξ,N−iξN−i−1 +Dξ,N−i
2Aξ,N−i

(13)

ξ̂N−i = min
(
ξ̄N−i, UN−i

)
. (14)

Using (13) and (14) with i = N − 1, it follows that

ξ̄1 = −Cξ,1ξ0 +Dξ,1

2Aξ,1
, ξ̂1 = min

(
ξ̄1, U1

)
. (15)

Similarly, by observing the form of (9) and (11), it follows

that

mδ10→ξ0 ∝ exp

{(
Bξ,1 −

C2
ξ,1

4Aξ,1

)
ξ20 − Cξ,1Dξ,1

2Aξ,1
ξ0

}
.

(16)

The estimate ξ̂0 can be obtained by maximizing (16).

ξ̂0 = ξ̄0 = max
ξ0

mδ10→ξ0 =
Cξ,1Dξ,1

4Aξ,1Bξ,1 − C2
ξ,1

. (17)

The estimate in (17) can now be substituted in (15) to yield ξ̄1,

which can then be used to solve for ξ̂1. Clearly, this chain of

calculations can be continued using recursions (13) and (14).

Define

gξ,k(x)
Δ
= −Cξ,kx+Dξ,k

2Aξ,k
. (18)

Lemma 1 For real numbers a and b, the function gξ,k(.) de-
fined in (18) satisfies

gξ,k (min(a, b)) = min (gξ,k(a), gξ,k(b)) .

Proof: The constants Aξ,k, Cξ,k and Dξ,k are defined in (7)

and (12). The proof follows by noting that
−Cξ,k

2Aξ,k
> 0 which

implies that gξ,k(.) is a monotonically increasing function.

Using the notation gξ,k(.), it follows that

ξ̄1 = gξ,1

(
ξ̂0

)
, ξ̂1 = min

(
U1, gξ,1

(
ξ̂0

))
ξ̄2 = gξ,2

(
ξ̂1

)
, ξ̂2 = min

(
U2, gξ,2

(
ξ̂1

))
where

gξ,2

(
ξ̂1

)
= gξ,2

(
min

(
U1, gξ,1

(
ξ̂0

)))
= min

(
gξ,2 (U1) , gξ,2

(
gξ,1

(
ξ̂0

)))
(19)

where (19) follows from Lemma 1. The estimate ξ̂2 can be

expressed as

ξ̂2 = min
(
U2,min

(
gξ,2 (U1) , gξ,2

(
gξ,1

(
ξ̂0

))))
= min

(
U2, gξ,2 (U1) , gξ,2

(
gξ,1

(
ξ̂0

)))
.

Hence, one can keep estimating ξ̂k at each stage using this

strategy. Note that the estimator only depends on functions of

data and can be readily evaluated. For m ≥ k, define

Gmξ,k(.)
Δ
= gξ,m (gξ,m−1 . . . gξ,k (.)) . (20)

The estimate ξ̂N can, therefore, be compactly represented as

ξ̂N = min
(
UN , G

N
ξ,N (UN−1) , . . . , G

N
ξ,2 (U1) , G

N
ξ,1

(
ξ̂0

))
.

(21)

By a similar reasoning, the estimate ψ̂N can be analogously

expressed as

ψ̂N = min
(
VN , G

N
ψ,N (VN−1) , . . . , G

N
ξ,2 (V1) , G

N
ξ,1

(
ψ̂0

))

and the factor graph based clock offset estimate (FGE) θ̂N is

given by

θ̂N =
ξ̂N − ψ̂N

2
. (22)

It only remains to calculate the functions of data G(.) in the

expressions for ξ̂N and ψ̂N to determine the FGE estimate

θ̂N . With the constants defined in (7), it follows that

GNξ,N (UN−1) = −Cξ,NUN−1 +Dξ,N

2Aξ,N
= UN−1 + λξσ

2 .
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Fig. 2. Comparison of MSE of θ̂N and θ̂ML.

Similarly it can be shown that

GNξ,N−1(UN−2) = UN−2 + 2λξσ
2

and so on. Using the constants defined in (12) for i = N−1, it

can be shown that ξ̂0 =
Cξ,1Dξ,1

4Aξ,1Bξ,1−C2
ξ,1

= +∞. This implies

that GNξ,1(ξ̂0) = +∞. Plugging this in (21) yields

ξ̂N = min(UN , UN−1 + λξσ
2, . . . , U1 + (N − 1)λξσ

2) .

Similarly, the estimate ψ̂N is given by

ψ̂N = min(VN , VN−1 + λψσ
2, . . . , V1 + (N − 1)λψσ

2)

and the estimate θ̂N can be obtained using (22) as

θ̂N =
1

2
min(UN , UN−1 + λξσ

2, UN−2 + 2λξσ
2,

. . . , U1 + (N − 1)λξσ
2)−

1

2
min(VN , VN−1 + λψσ

2, VN−2 + 2λψσ
2,

. . . , V1 + (N − 1)λψσ
2) . (23)

As the Gauss-Markov system noise σ2 → 0, (23) yields

θ̂N → θ̂ML =
min (UN , . . . , U1)−min (VN , . . . , V1)

2
(24)

which is the ML estimator proposed in [6].

4. SIMULATION RESULTS

With λξ = λψ = 10 and σ = 10−2, Fig. 2 shows the MSE

performance of θ̂N and θ̂ML, compared with the Bayesian

Chapman-Robbins bound (BCHRB). It is clear that θ̂N ex-

hibits a better performance than θ̂ML by incorporating the ef-

fects of time variations in clock offset. As the variance of the

Gauss-Markov model accumulates with the addition of more

samples, the MSE of θ̂ML gets worse. Fig. 3 depicts the MSE

of θ̂N in (23) with N = 25. The horizontal line represents

the MSE of the ML estimator (24). It can be observed that the

MSE obtained by using the FGE for estimating θ approaches

the MSE of the ML as σ < 10−3.
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Fig. 3. MSE in estimation of θN vs σ.

5. CONCLUSION

The estimation of a possibly time-varying clock offset is stud-

ied using factor graphs. A closed form solution to the clock

offset estimation problem is presented using a novel message

passing strategy based on the max-product algorithm. This

estimator shows a performance superior to the ML estimator

proposed in [6] by capturing the effects of time variations in

the clock offset efficiently.
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