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ABSTRACT

In our previous work, we developed efficient field reconstruction
methods in wireless sensor networks. In this paper, we use an
amplify-and-forward to transmit the sensor measurements to the
fusion center and we derive the mean square error (MSE) of the
reconstructed field as a function of the measurement and receive
SNR and of the sensor positions. We propose to allocate the sen-
sor node transmit powers such that the sum power is minimized
subject to an MSE target and we phrase this approach as a convex
optimization problem that can be numerically solved in an efficient
manner. For the case of critical sampling we derive a closed-form
expression for the optimal power allocation. We illustrate the power
savings achieved with the proposed power allocation schemes both
for Gaussian and Rayleigh fading channels.

Index Terms— Wireless sensor network, field reconstruction,
power allocation

1. INTRODUCTION

Wireless sensor networks (WSN) have recently attracted consider-
able attention for diverse monitoring applications [1]. With WSN,
sensor nodes are deployed in the region to be monitored and com-
municate wirelessly in order to collect and process information about
the phenomenon of interest. In this paper, we consider the problem
of power allocation in the context of the system architecture intro-
duced in [2] for distributed sampling and reconstruction of a two-
dimensional (2-D) physical fields.

Power scheduling for decentralized estimation in sensor net-
works based on uncoded quadrature amplitude modulated (QAM)
and on analog transmission was studied respectively in [3] and [4].
The optimal power allocation in those papers is similar to water-
filling, i.e., sensor nodes with poor channel gains or noisy observa-
tions remain inactive to save power. These results were extended
to the case of distributed estimation of a random field in [5]. A
suboptimal power allocation scheme for the estimation of a random
parameter in the presence of noisy links was proposed in [6].

In this paper, we investigate the problem of power allocation in
a WSN using amplify-and-forward transmissions to the fusion cen-
ter (FC) as in [4]. However, contrary to the scalar model in [4], we
consider a matrix-vector model that we used for field reconstruction
based on shift-invariant spaces in our previous work [7]. Different
from [4], the optimal power allocation for our model depends on the
sensor node positions. In order to maximize network lifetime, our
aim is to minimize the transmit sum power subject to a prescribed
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estimation accuracy. We formulate this objective as a convex op-
timization problem that can be solved numerically using standard
techniques. For the special case of critical sampling, we derive a
closed-form solution for this problem.

Our paper is organized as follows. Section 2 reviews our sys-
tem model for field reconstruction in WSN. In Section 3, we study
the optimal power allocation problem. Section 4 shows numerical
results illustrating the performance of our power allocation scheme,
and Section 5 provides concluding remarks.

2. SYSTEM MODEL

2.1. Measurement and Transmission Model

We consider a WSN consisting of I sensor nodes deployed over a
given region A to monitor a 2-D physical field h(x, y). Here, x
and y are the spatial coordinates. The position of node i is denoted
by (xi, yi) and its measurement is given by hi + vi where hi =
h(xi, yi). Here, vi denotes spatially white measurement noise with
(node-dependent) variance σ2

vi
. We assume that the physical field

belongs to a shift-invariant space V (g) (see [2, 8] for details), i.e.,

h(x, y) =
∑

(k,l)∈A

ck,l g(x−k, y−l). (1)

Here, g(x, y) is a generator function with compact support S (e.g., a
B-spline function) and A = Z

2 ∩ (A + S). We further assume that
the field has mean power σ2

h.
The reconstruction of h(x, y) from the noisy samples hi + vi

thus amounts to estimating the coefficients ck,l. To this end, we
augment the least-squares approach from [2] with an amplify-and-
forward (AF) transmission protocol in which sensor node i transmits
the scaled measurement si =

√
pi
(
hi+vi

)
to the FC, which requires

an average transmit power of

Pi � E{s2i } = pi
(
σ
2
h + σ

2
vi

)
. (2)

The transmissions of the individual nodes are over orthogonal chan-
nels and the signals received by the FC are given by

ri =
√
γisi + wi =

√
γipihi + zi.

Here, γi is the channel gain, wi is white receiver noise, with variance
σ2
w and

zi =
√
γipivi + wi (3)

denotes the aggregate noise with variance γipiσ
2
vi

+ σ2
w. Below

we will consider Gaussian channels (modeled via γi = 1) and flat
Rayleigh fading channels (modeled by exponentially distributed γi).

We next formulate the system model using matrices and vectors.
To this end, let (k0, l0) and (k1, l1) denote the smallest and largest
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indices in A, respectively, such that J = KL with K � k1− k0+1
and L � (l1 − l0 +1). We define the block-banded I× J matrix G

with elements

[G]i,p = g(xi − kp, yi − lp)

and the vectors r,v (length I), and c (length J) with elements

[r]i = ri, [v]i = vi, and [c]p = ckp,lp ,

where kp = k0 + ((p−1) modK), and lp = l0 +
⌊
p−1
K

⌋
. The

receive signals can be rewritten in matrix-vector form as

r = AGc+ z = G̃c+ z, (4)

where A � diag {√γipi}, G̃ � AG, and the aggregate noise
vector z has covariance matrix Cz = diag

{
γipiσ

2
vi

+ σ2
w

}
.

2.2. Field Reconstruction and Reconstruction Performance

We determine the field coefficients c in the linear system model (4)
using the best linear unbiased estimator (BLUE) [9] with the noise
covariance matrix Cz as weight, i.e.,

ĉ � argmin
c

∥∥G̃c− r
∥∥2
C

−1
z

= (G̃T
C

−1
z G̃)−1

G̃
T
C

−1
z r. (5)

Note that the computation of the coefficient estimates ĉ requires that
the noise statistics Cz and the matrix G̃ (i.e., the sensor node posi-
tions and channel gains) be known at the FC. In order for the es-
timator (5) to exist, the matrix G̃ must have full rank, which in
turn requires I ≥ J, i.e., that there are at least as many sensors
as unknown coefficients (in addition, the sensor nodes need to be
sufficiently closely spaced). Technically, the sensor node positions
(xi, yi), have to form a so-called stable sampling set [8]. The case
I = J will be referred to henceforth as critical sampling.

With the optimal coefficient estimates (5), the field can be re-
constructed for at any position (x, y) ∈ A according to (cf. (1))

ĥ(x, y) =
∑

(k,l)∈A

ĉk,l g(x−k, y−l) (6)

To assess accuracy of (6), we next derive the mean-square field re-
construction error within A. To this end, we define the length-J
vector

[g]p(x, y) = g(x− kp, y − lp),

with kp and lp as in Section 2.1, and the associated Gramian Gg =∫∫
A
g(x, y)gT(x, y) dx dy. Taking the expectation with respect to

the noise, with the sensor positions and channel gains fixed, we ob-
tain

ε � E

{∫∫
A

(
ĥ(x, y)−h(x, y)

)2
dx dy

}

=

∫∫
A

g
T(x, y) E

{
(ĉ− c) (ĉ− c)T

}
g(x, y)dxdy

=

∫∫
A

tr
{
Cĉ g(x, y)g

T(x, y)
}
dx dy = tr {CĉGg} . (7)

Here, Cĉ = cov
{
ĉ
}
� E

{
(ĉ − c)(ĉ − c)T

}
denotes the covari-

ance matrix of the (unbiased) coefficient estimates ĉ. For compactly
supported generator functions, the Gramian Gg can be shown to be

a symmetric block-banded Toeplitz matrix. The covariance matrix
of the coefficient estimates can be further developed as

Cĉ−c = cov
{
(G̃T

C
−1
z G̃)−1

G̃
T
C

−1
z z

}
= (G̃T

C
−1
z G̃)−1 = (GT

A
T
C

−1
z AG)−1

= (GT
DG)−1

. (8)

Here, we used the diagonal matrix

D � A
T
C

−1
z A = diag{di}, with di �

1

σ2
vi

+
σ2
w

γipi

. (9)

Inserting (8) and (9) into (7), we finally obtain the MSE as

ε = tr {CĉGg} = tr
{
(GT

DG)−1
Gg

}
. (10)

This expression captures the dependence of the reconstruction MSE
on the channel gains γi, the sensor node positions (xi, yi), the AF
factors pi, and the noise variances σ2

vi
and σ2

w.

3. OPTIMAL POWER ALLOCATION

In the context of sensor networks, one of the main concerns is net-
work lifetime, which in turn is directly related to energy efficiency.
For that reason, we propose to keep the total transmit power of the
sensor nodes as low as possible while satisfying prescribed require-
ments for the reconstruction quality. Hence, we aim at allocating the
power scaling factors pi such that the transmit sum power

P �

I∑
i=1

Pi =

I∑
i=1

pi
(
σ
2
h + σ

2
vi

)

is minimized subject to a given MSE target εmax. Defining the
length-I vectors p = (p1 . . . pI)

T and q = (q1 . . . qI)
T with

qi = σ2
h + σ2

vi
, we have P = pTq and the optimal power allo-

cation problem is given by (cf. (10))

minimize
p∈RI

+

p
T
q

subject to tr
{
(GT

D(p)G)−1
Gg

} ≤ εmax.

(11)

Here, we made the dependence of D on p explicit by writing D(p).
The optimization problem (11) can be shown to be convex (see [10]).
Note that the MSE target εmax cannot be chosen arbitrarily small. In
fact, even with infinite transmit powers, the MSE is lower bounded
by a strictly positive number due to the presence of measurement
noise, i.e.,

ε ≥ εmin � lim
pi→∞

ε = tr
{
(GT diag{σ−2

vi
}G)−1

Gg

}
.

Hence the MSE target has to be chosen larger than εmin in order for
(11) to have a solution. While the problem in general has no closed-
form solution, it can be solved numerically in an efficient manner
using standard algorithms [11]. Clearly, the power allocated to node
i depends on the local measurement noise variance σ2

vi
, on the chan-

nel gain γi, and (through the matrix G) on the sensor node positions.
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3.1. Critical Sampling

We next show that for the special case of critical sampling the power
allocation problem (11) has a closed-form solution. In this case,
there are as many sensor nodes as unknown coefficients, i.e., I =
J. We furthermore assume that the node positions form a stable
sampling set such that G is a square invertible matrix. In this case,
(10) can be specialized as

ε = tr
{
(GT

DG)−1
Gg

}
= tr

{
D

−1(GT )−1
GgG

−1}
=

I∑
i=1

1

di
gi =

I∑
i=1

σ
2
vi
gi +

I∑
i=1

σ2
wgi

γipi
, (12)

where we defined gi �
[
(GT )−1GgG

−1
]
ii

and used that D−1 =

diag{d−1
i } with d−1

i =
(
σ2
vi

+
σ2
w

γipi

)
(cf. (9)). Then the side-

constraint in the optimization problem in (11) simplifies to

I∑
i=1

σ2
wgi

γipi
≤ ε

′
max � εmax − εmin,

where εmin =
∑I

i=1 σ
2
vi
gi and εmax ≥ εmin ensures a nonempty

feasible set. The Lagrangian associated to the optimum power allo-
cation problem (11) in this case equals

L(p, λ) = p
T
q+ λ

(
I∑

i=1

σ2
wgi

γipi
− ε

′
max

)

=
I∑

i=1

(
piqi + λ

σ2
wgi

γipi

)
− λε

′
max

and the Lagrangian dual function reads

g(λ) = L(p�
, λ) = inf

p
L(p, λ) =

I∑
i=1

(
p
�
i qi + λ

σ2
wgi

γip�i

)
− λε

′
max

= 2σw

√
λ

I∑
i=1

√
giqi

γi
− λε

′
max,

where

p
�
i = arg inf

pi

(
piqi + λ

σ2
wgi

γipi

)
=

√
λσ2

wgi

γiqi
.

We therefore have the Lagrange dual problem

maximize
λ

g(λ) = 2σw

√
λ

I∑
i=1

√
giqi

γi
− λε

′
max

subject to λ ≥ 0,

whose solution is given by

λ
� =

⎛
⎝σw

∑I

i=1

√
giqi
γi

ε′max

⎞
⎠

2

.

It can be shown that the Karush-Kuhn-Tucker conditions [11, Chap-
ter 5] hold, so that strong duality is fulfilled. With the dual opti-
mal solution λ�, the optimal solution for the primal problem equals
L(p�, λ�) = g(λ�) with the primal feasible minimizer

p
�
i =

σ2
w

ε′max

√
gi

γiqi

I∑
j=1

√
gjqj

γj
. (13)

The optimal sensor node transmit powers can then be written as

P
�
i = p

�
i qi =

σ2
w

ε′max

√
giqi

γi

I∑
j=1

√
gjqj

γj
.

Clearly, a smaller MSE target entails larger transmit powers. Defin-

ing βi �
√

giqi
γi

and αi �
βi∑

I
j=1

βj
and inserting (13) into (12), we

obtain for the MSE

ε
� =

I∑
i=1

σ
2
vi
gi +

I∑
i=1

σ2
wgi

γip�i
=

I∑
i=1

(
σ
2
vi
gi + αi ε

′
max

)

=

I∑
i=1

(
σ
2
vi
gi + αi

(
εmax −

I∑
j=1

σ
2
vj
gj

))
= εmax. (14)

Hence, the optimal power allocation scheme meets the MSE target
εmax with equality.

In the critical sampling case, the overall MSE can be split into
contributions from the individual sensor nodes. Specifically, node
i contributes εi = σ2

vi
gi + αiε

′
max to the overall MSE, where the

fraction αi of the excess MSE ε′max attributed to node i is large if
gi is large (which means that sensor node i is rather isolated) or if
the associated channel gain γi is small. As a result, sensor nodes
whose measurements are already received with high accuracy (i.e.,
low σ2

vi
and/or large γi) are assigned a smaller transmit power Pi

than those whose measurement would be received with poor quality.
We emphasize that—in contrast to existing work—the placement of
the sensor node (reflected by the factor gi) plays an important role in
the power allocation. Indeed, the MSE contribution of those nodes
that are necessary to maintain a stable sampling set (i.e., the nodes
with large gi) may be higher than that of nodes with small gi.

4. NUMERICAL SIMULATIONS

We next present numerical results to illustrate the performance of
our power allocation scheme. We model the field via a shift-invariant
space according to (1), with the generator function chosen as third-
order B-spline [2]. The field model was normalized such that σ2

h =
1. The region being monitored is given by A = [0, 5]× [0, 5]; thus,
there are J = 36 field coefficients to be estimated. We used a WSN
with I ≥ 36 sensor nodes, where the first 36 nodes (the minimum
number) were located on the square grid Z

2 ∩ A and the remaining
I − 36 nodes were placed randomly according to a spatially uni-
form distribution over the region A. Since the first 36 nodes can
be shown to form a stable sampling set for the critically sampled
case, all I nodes form a stable sampling set, too. For the case of
Gaussian channels, all channel gains γi were set to 1, whereas for
the Rayleigh fading case the channel gains were generated i.i.d. us-
ing an exponential distribution with mean μγ = 1. The measure-
ment noise variances σ2

vi
of the different sensors and the receiver

noise variance σ2
w were chosen i.i.d. according to a uniform distri-

bution Unif {0.01, 0.1} (this corresponds to measurement SNRs and
receive SNRs between 10 dB and 20 dB).

Using the parameters specified above, we simulated three power
allocation schemes: (A) the numerically evaluated optimal power al-
location scheme according to (11); (B) power allocation according
to the closed-form expression (13) for the first 36 sensor nodes and
zero power for the remaining sensor nodes; (C) a scheme with uni-
form power allocation for the first 36 sensor nodes and zero power
for the remaining sensor nodes (uniform power allocation over all
nodes tends to perform even poorer in the scenarios considered).
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(a) (b)

Fig. 1. Performance comparison of different transmit power allocation schemes in terms of transmit sum power versus number of sensor
nodes in Gaussian and Rayleigh fading channels: (a) normalized MSE target of −20 dB (b) normalized MSE target of −10 dB.

Fig. 2. Comparison of different power allocation schemes in terms
of transmit sum power versus normalized MSE target for 100 sensor
nodes and Gaussian and Rayleigh fading channels.

We first compare a setup with a stringent (normalized) MSE tar-
get of εmax

J|A|
= 0.01 and another setup with a relaxed MSE target

of εmax

J|A|
= 0.1. Figure 1 displays the required transmit sum power

versus the number of sensor nodes I for both MSE targets. Note that
schemes B and C use only the first 36 nodes and hence their sum
power is independent of I . Clearly, the optimal power allocation
(scheme A) requires the lowest power in all cases; furthermore, its
performance advantage over schemes B and C grows with increasing
I . For Gaussian channels, schemes B and C perform identically and
the scheme A offers power savings only in the case of small MSE
target. For Rayleigh fading, scheme B performs consistently bet-
ter than scheme C and the optimal scheme A saves further transmit
power also in the case of large MSE target. The gains of scheme A
are as high as 2.5 dB, which roughly translates into an 80% increase
of network lifetime.

Figure 2 shows how the required transmit sum power P depends
on the MSE target εmax for the case of I = 100 nodes. With all
schemes, achieving a smaller MSE requires to increase the trans-
mit sum power. For Gaussian channels and large MSE targets, all
power allocation schemes perform virtually identical. However, for
decreasing MSE targets, the performance advantage of the optimal
power allocation schemes (A and B) increases. For Rayleigh fading,
scheme A has a non-vanishing performance advantage over scheme
B at all MSE targets, and scheme C performs strictly poorer than
both A and B.

5. CONCLUSIONS

We considered field reconstruction in WSN based on shift-invariant
spaces and an AF protocol for the transmission of sensor node mea-
surements to the fusion center. We derived the MSE achieved by this
scheme and developed optimal schemes for allocating transmit pow-
ers to the sensor nodes in order to minimize the sum power while
maintaining a desired MSE performance. For the case of critical
sampling, we derived closed-form expressions for the optimal power
allocation. Numerical simulations for Gaussian and Rayleigh fading
channels showed that the proposed power allocation schemes have
the potential for several dB of power savings compared to uniform
power allocation.
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