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ABSTRACT
In this paper, we focus on the use capillary M2M (Machine-
to-Machine) networks for the estimation of spatial random
fields. The observations (samples) collected by the sensors
are spatially correlated and, for this reason, we propose a
distributed pre-coding scheme based on the Karhunen-Loève
(KL) transform. This allows us to obtain an over-the-air
compressed representation of such set of observations. We
assume that sensors operate with (independent) duty-cycles
and we derive a closed-form expression of the optimal power
allocation strategy which minimizes the estimation error for
a given power constraint. For benchmarking purposes, we
also assess the performance of another scheme based on a
particularization of the partial KL transform.

I. INTRODUCTION

In recent years, we have witnessed the emergence of the
paradigm of Machine-to-Machine (M2M) communications.
M2M devices such as automatic meter readers are charac-
terized by very low data rates, low mobility requirements
and, in the coming years, they are expected to significantly
outnumber voice and data terminals. All this entails a major
re-design of future cellular networks. In an attempt to make
such transition smoother, ETSIs (European Telecommunica-
tion Standards Institute) M2M Technical Committee has pro-
posed a hybrid architecture whereby cellular-enabled gate-
ways (GW) act as traffic aggregation and protocol translation
points for their capillary (i.e. wireless sensor) networks.

Our goal is, thus, to accurately reconstruct a spatial ran-
dom field (e.g. temperature, concentration of air pollutants)
from the samples collected by sensors. In [1], the authors
analyze the impact of random sampling patterns on the
resulting estimation distortion. As for transmission aspects,
[2] proved that cooperative beamforming (CBF) is optimal
when sensors convey a common message (observation) to
a remote destination. Otherwise, sensors must disseminate
their observations to the rest of nodes prior to the beam-
forming stage. The signalling overhead and the fact that the
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exchanged information is partly known to the recipients (due
to correlation) render such approaches inefficient.

Contribution: In this paper, we focus on the estimation of
spatial random fields from a set of correlated observations.
As in [3], we allow sensors to simultaneously transmit
their observations (since this reverts into lower transmission
latency) but, unlike in [3], we make no assumption on
signal sparsity. Instead, we leverage on the spatial correlation
properties of the field. Hence, we propose a distributed pre-
coding scheme based on the Karhunen-Loève (KL) trans-
form [4] which allows us to obtain an over-the-air com-
pressed representation of the observations. This can actually
be regarded as an extension of the cooperative beamforming
scheme of [5] for the case of correlated observations. We
further consider that sensor nodes operate with independent
duty cycles and derive the optimal power allocation for the
minimization of distortion subject to a sum-power constraint.

II. SIGNAL AND COMMUNICATION MODEL

Let X(s) be a spatial field defined over the two-
dimensional space R

2. We assume that X(s) is stationary,
zero-mean and Gaussian-distributed. The spatial field is
sampled by a set S of N sensors located at s1, . . . , sN
(locations are assumed to be known), this yielding

xj � X(sj) ; j = 1, . . . , N. (1)

Consequently, the vector of observations x = [x1, . . . , xN ]T

is jointly Gaussian and zero-mean, as well. For a specific set
of locations, the elements of the corresponding covariance
matrix Cxx = E

[
xxT

]
read [Cxx]j,j′ = k (sj, sj′) where

k (·, ·) denotes the covariance function of the spatial random
field. In order to enhance network lifetime, a pre-defined
duty cycle of p×100% is set. Therefore, sensors are in active
mode (i.e. transmitting information to the GW) or idle mode
(i.e. saving power) with probability p and 1−p, respectively.
In the sequel, we denote by SA and Sc

A the subsets of active
and idle sensors (with S = SA ∪ Sc

A). Their corresponding
cardinalities are NA = |SA|, and N c

A = |Sc
A|.

At a given time instant, the subset of active sensors
simultaneously transmit (i.e. beamform) their observations
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to GW. For the i-th transmission, the received signal reads1

ri =
√
ρi

N∑
j=1

wi,jhjzjXj + ni i = 1, . . . , N, (2)

where z1, . . . , zN are i.i.d. Bernoulli random variables ac-
counting for sensor activity, namely, zj = 1 with probability
p (and zj = 0 with probability 1 − p); {wi,j}Ni,j=1 denote
the set of transmit weights2 (to be designed); h1, h2 . . . , hN

stand for the sensor-to-GW channel coefficients; and ni

is additive white Gaussian noise of variance σ2
n, that is,

ni ∼ N (
0, σ2

n

)
. Further, we assume slow fading conditions

and, hence, the channel coefficients remain unchanged for N
consecutive transmissions. From the N × 1 received signal
vector r = [r1, . . . , rN ]

T , the GW attempts to estimate
(reconstruct) the spatial field at the set of sampled locations,
namely, x̂ = [x̂1, . . . , x̂N ]

T . Due to channel impairments,
the estimates are subject to some distortion which, in the
sequel, will be characterized by the following metric:

D �
1

N

N∑
j=1

E

[
|x̂j − xj |2

]
. (3)

III. COMPRESSED TRANSMISSION VIA THE
KARHUNEN-LOÈVE (KL) TRANSFORM

Our goal here is to design a set of transmit weights
{wi,j}Ni,j=1 which exploit the spatial correlation properties of
the random field and, by doing so, allow for a more energy-
efficient (i.e. compressed) transmission. To that aim, we
resort to the well-known Karhunen-Loève (KL) Transform.

III-A. Review of the Karhunen-Loève (KL) Transform

Let x = [x1, . . . , xN ]
T be a set of jointly Gaussian-

distributed random variables. The eigendecomposition of its
covariance matrix is given by

Cxx = ΦΛΦT , (4)

where Φ = [φ1, . . . ,φN ] and Λ = diag [λ1, . . . , λN ]
are the unitary and diagonal matrices containing the cor-
responding eigenvectors and eigenvalues, respectively (with
λi ∈ {R+, 0} and λ1 ≥ λ2 ≥ . . . ≥ λN ). The KL transform
of vector x can thus be defined as

y = ΦTx =

⎡
⎢⎣

φT
1 x
...

φT
N
x

⎤
⎥⎦ . (5)

Interestingly, the elements of the transform vector y =
[y1, . . . , yN ] turn out to be independent random variables,
that is, y = [y1, . . . , yN ] ∼ N (0,Λ). Since Φ is a unitary
matrix, the inverse transform can be readily expressed as

x = Φy =

N∑
i=1

φiyi. (6)

1Perfect phase synchronization is assumed here.
2Notice that a different set of weights wi,j is used for each transmission.

Besides, the first k components in y are known to provide the
best k-length representation of vector x, that is, the one that
minimizes the quadratic error (MSE) in the estimate given
by x̂(k) =

∑k
i=1 φiyi. For k ≤ N , the vector [y1, . . . , yk]

T

can be regarded as a compressed version of x.

III-B. Design of transmit weights

Inspired by [3], we let the transmit weights be

wi,j =
√
ρi

hj∗
|hj |2w

′
i,j ; i, j = 1 . . .N (7)

with ρi; i = 1 . . .N denoting a set of scalar factors to
be determined later. The rationale for this approach is
as follows: (i) the term h∗

j allows sensors to coherently
combine their transmissions at the GW ; (ii) the term 1

|hj|2
carries out channel equalization (inversion); and (iii) the w′

i,j

coefficients are in charge of the compression task itself.
Since (ii) makes the system oblivious to the channel gains,
we simply let w′

i,j be the coefficients of the (centralized) KL
transform, that is, w′

i,j = φi,j . In other words, in the i-th
transmission we attempt to convey the observations over the
i-th eigenmode of the covariance matrix Cxx. This is strictly
true when all sensors are active. However, in scenarios with
duty cycle below 100% (i.e. p < 1), only a subset of
the sensors effectively transmit data; still, the same w′

i,j

coefficients are used3. This results into some degradation
of the generated beampattern and, ultimately, an increased
distortion in the reconstructed spatial field. This effect will
be analyzed more in detail in subsequent sections.

The total transmit power at the i-th transmission reads

Pi = E

⎡
⎣ ∑
j∈SA

|wi,jxj |2
⎤
⎦ =

⎛
⎝ ∑

j∈SA

1

|hj |2φ
2
i,jσ

2
x

⎞
⎠ ρi(8)

= αiρi ; i = 1, . . . , N, (9)

where we have defined αi �
∑N

j∈SA

1
|hj |2φ

2
i,jσ

2
x. From (2)

and (7), and by letting w′
i,j = φi,j , the received signal for

the i-th transmission now reads:

ri =
√
ρi

N∑
j=1

φi,jzjXj + ni i = 1, . . . , N. (10)

IV. DISTORTION ANALYSIS

The Linear Minimum-Mean Square Error (LMMSE) esti-
mator of x given r can be expressed as [6]

x̂ = CxrC
−1
rr r, (11)

with E [·] denoting the statistical expectation with respect to
x, y and n; and where Cxr = E

[
xrT

]
and Crr = E

[
rrT

]
.

The average distortion in the estimate of x at the GW reads

D =
1

N
Tr

{
Cxx −CxrC

−1
rr Crx

}
, (12)

3By doing so, the w
′

i,j coefficients only need to be computed once, in
the initialization phase , since they exclusively depend on matrix Cxx.
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where Tr (·) denotes the trace operator. First of all, we need
to compute matrix Crr. It is straightforward to show that ri
is zero-mean and, hence, we can write [Crr]i,i′ = E [riri′ ].
One can also prove that the diagonal elements (i.e. for i = i′)
can be expressed as

E
[
r2i
]
= ρiλiE

2[z] + ρiσ
2
zσ

2
x + σ2

n (13)

whereas, for the off-diagonal elements, we have E [riri′ ] = 0
(the proof is omitted due to space limitation). In other words,
the random variables {r1, r2, . . . , rN} are uncorrelated and,
hence, matrix Crr turns out to be diagonal. Next, in order
to compute matrix Cxr, we recall from (6) that

xj =

N∑
i=1

φi,jyi, (14)

along with the expression for the received signal in (10).
Bearing in mind that the random variables xj and zj are
statistically independent, the E [xjri] terms yield

E [xjri] = E

[
N∑
i=1

φi,jyiri

]
= E[z]

√
ρiφi,jλi (15)

for i, j = 1, . . . , N . Hence, matrix Cxr reads

Cxr = E[z]ΓΦΛ (16)

with Γ = diag [ρ1, . . . , ρN ]. Finally, from (12), (13) and
(16), the average distortion is given by

D = σ2
x − 1

N

N∑
i=1

ρip
2λ2

i

ρip2λi + ρiσ2
xp(1− p) + σ2

n

, (17)

where we have used that E [z] = p and σ2
z = p(1 − p).

Clearly, for p = 1 (i.e. duty cycle of 100%) equation (17)
reverts to that in our previous work [7].

IV-A. Optimal Power Allocation

In order to compute the set of transmit weights wi,j , we
still need to determine the power allocation ρi for each
eigenmode (while explicitly taking into consideration the
aforementioned duty cycle p). In particular, our interest lies
in finding the power allocation which minimizes the overall
distortion for a given sum-power constraint. From (17) and
(9), the problem can be posed as:

min
ρ1,...,ρN

σ2
x − 1

N

N∑
i=1

ρip
2λ2

i

ρip2λi + ρiσ2
xp(1− p) + σ2

n

(18)

s.t.
N∑
i=1

αiρi ≤ Pt, (19)

This is a convex problem and, similarly to [8], it can be
solved in closed-form. This yields the following waterfilling-
like solution:

ρ∗i =

[
σn√

αiμp+ (1− p)σ2
x

− σ2
n

λip2 + p(1− p)σ2
x

]+
(20)

where [x]
+

� max {x, 0} and μ denotes the Lagrange
multiplier associated to the power constraint, namely,

μ =

⎛
⎝Pt +

∑K
i=1

αiσ
2

n

λip2+p(1−p)σ2
x∑K

i=1
λiσn

√
αi

λip+(1−p)σ2
x

⎞
⎠

−2

. (21)

In this last expression, K stands for the largest number of
transmissions such that (i) the optimal scaling factors verify
ρ∗i ≥ 0 for i = 1, . . . ,K; and (ii) the sum-power constraint
holds with equality, i.e.

∑K
i=1 ρ

∗
iαi = Pt. Without loss of

generality, we have also assumed that λ1/α1 > λ2/α2 >
. . . > λN/αN .

V. COMPRESSED TRANSMISSION VIA THE
PARTIAL KL TRANSFORM

In the previous section, we simply let w′
i,j be the coef-

ficients of the KL transform associated to the covariance
matrix of the entire set of sensors S (namely, w′

i,j = φi,j ).
Yet computationally efficient, this approach results into some
mismatch between the designed and effective beampatterns
since only a subset of sensors will actually transmit data.
Hence, we ask ourselves whether it pays off to specifically
design the w′

i,j weights (and the corresponding LMMSE
estimator in equation (11)) for each realization of the subset
of active sensors. To answer that, we resort to the partial
KL transform (pKLT) of [4] which we particularize for the
problem at hand.

Let xA and xc
A denote the NA × 1 and N c

A × 1 vectors
of observations collected by the subsets of active and idle
sensors, respectively. From [4], the best representation of the
N × 1 vector y from xA is given by the pKLT, namely,

y = ΨT

(
INA

CxAcxA
C−1

xAxA

)
xA, (22)

with INA
standing for the NA × NA identity matrix,

CxAcxA
= E

[
xAcxT

A

]
and CxAxA

= E
[
xAx

T
A

]
. Besides,

Ψ is the N × N unitary matrix of the eigenvectors of the
covariance matrix Cx̃x̃, namely,

Cx̃x̃ =

(
CxAxA

CxAxAc

CxAcxA
CxAcxA

C−1
xAxA

CxAxAc

)
(23)

= ΨΔΨT (24)

and Δ = diag [δ1, . . . , δN ] is a (diagonal) matrix with the
corresponding eigenvalues. This follows from the fact that
the product of the last two terms on the left handside of (22)
can be regarded as a new vector x̃ defined as

x̃ =

[
xA

x̃c
A

]
=

(
INA

CxAcxA
C−1

xAxA

)
xA, (25)

In order to implement the partial KL transform in a
distributed fashion, it suffices to define matrix B =
[b1, . . . ,bN ] as

BT = ΨT

(
INA

CxAc ,xA
C−1

xA,xA

)
(26)
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σ2
n = 1, σ2

x = 1)

and then let w′
i,j = bi,j for i, j = 1, . . . , N , where bi,j

stands for the j-th element of vector bi. Following a similar
derivation to that in Section IV, the distortion for the optimal
MMSE estimator can be readily expressed as:

D = σ2
x − 1

N

N∑
i=1

ρiδ
2
i

ρiδi + σ2
n

. (27)

From this, it is straightforward to find a closed-form expres-
sion of the optimal power allocation (see Section IV-A).

VI. SIMULATION RESULTS AND CONCLUSIONS

The simulation scenario consists of N = 200 sensors de-
ployed at random locations within a 1000×1000 rectangular
area (uniform distribution). As in [9], the spatial field is
modeled as a Gaussian Markov Ornstein-Uhlenbeck process
with correlation (covariance) function given by k (si, sj) =
σ2
x exp (−θ‖si − sj‖2). Clearly, the higher the parameter θ,

the lower the correlation among observations. Due to space
limitations, we show results for AWGN channels only (i.e.,
hj = 1 for j = 1, . . . , N ).

In Fig. 1a, we depict the average distortion in the esti-
mated random field as a function of the sensor duty-cycle p.
We illustrate the performance of both the KLT- and pKLT-
based cooperative beamforming schemes. Unsurprisingly,
distortion is a monotonically decreasing function in p. By
increasing p the active number of sensors increases on
average and, hence, the beamforming gain is larger. Besides,
the pKLT-based scheme outperforms the KLT-based one for
all p (for p = 1, both schemes are identical). This stems
from the fact that pKLT exploits the information on the
subset of active sensors in each realization not only for

power allocation purposes but also for the computation of the
compression term (w′

ij) in the beamforming weights (and,
consequently, the design of the corresponding estimator in
the GW). Despite of the computational burden that pKLT
entails, the gain can be regarded as moderate for highly
correlated fields (2 dB for 30% duty cycle when θ = 10−3)
or negligible in fields with lower correlation (θ = 10−2).

Fig. 1b provides further insights on the average number
of active eigenmodes (or, equivalently, consecutive transmis-
sions needed, or transmission latency). The impact of duty
cycle in the KLT- and pKLT-based approaches is radically
different. In the KLT case, the power allocation scheme
activates more eigenmodes for small p. In this way, it
attempts to (partly) compensate for the increasing distortion
in the beampatterns by sending more (in principle redundant)
information. On the contrary, the pKLT scheme tends to
activate less eigenmodes. This is attributed to the fact that,
when p diminishes, the attempt to infer the observations of
idle sensors by conditioning on those of the active ones (the
x̃c
A term in equation (25)) is less accurate. Likewise, matrix

Cx̃x̃ becomes substantially different from Cxx this having
a direct impact on the designed (eigen)beamformers. Their
combined effects result into a reduction of the number of
active modes (i.e. focusing on the more reliable ones). Inter-
estingly, the gap is larger for scenarios with low correlation
(large θ) since the difficulty to infer unknown data is higher.

In conclusion, diminishing the duty cycle has a nega-
tive impact in the performance of the proposed pre-coding
schemes. This loss can be partly compensated by resorting
to the partial KL transform, at the expense of a substantial
increase in computational burden and associated signalling.
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