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ABSTRACT

Saddle point problems arise from many wireless applications, and

primal-dual iterative algorithms are widely applied to find the saddle

points. In the existing literature, the convergence results of such al-

gorithms are established assuming the problem specific parameters

remain unchanged during the iterations. However, this assumption

is unrealistic in time varying wireless systems, as explicit message

passing is usually involved in the iterations and the channel state in-

formation (CSI) may change in a time scale comparable to the algo-

rithm update period. This paper investigates the convergence behav-

ior and the tracking error of primal-dual iterative algorithms under

time varying CSI. The convergence results are established by study-

ing the stability of an equivalent virtual dynamic system derived in

the paper, and the Lyapunov theory is applied for the stability anal-

ysis. We show that the average tracking error is proportional to the

time variation rate of the CSI. We also derive an adaptive primal-dual

algorithm by introducing a compensation term to reduce the tracking

error under the time varying CSI.

Index Terms— Saddle Point, Convergence Analysis, Time-

Varying, Lyapunov Stability, Convex Optimization

1. INTRODUCTION

Saddle point problems arise in a number of wireless communica-

tion applications such as competitive games and resource alloca-

tions. Resource allocation problems can be formulated as a con-

strained maximization of some utility functions. By constructing a

Lagrangian function, the constrained problem can be reformulated

into an unconstrained one and be solved by computing the saddle

point of the Lagrangian function. Most remarkably, primal-dual

gradient methods have been widely used for computing the saddle

points of general Lagrangian functions. The primal-dual gradient

methods update the primal and dual variables simultaneously by

evaluating the gradient of both the primal function and dual func-

tion at the same time. A classical study of primal-dual algorithms

has been done by Arrow et al. in work [1]. Recently, Feijer et al.
[2] have studied the stability of these primal-dual algorithm dynam-

ics and extended the results to various network resource allocations

problems.

In the above literature, when people discuss the convergence be-

havior of the primal-dual gradient algorithm, all the problem spe-

cific parameters are considered to be time invariant. However, this

assumption is not always realistic, especially in wireless communi-

cation scenarios. For instance, the operating environment in terms of

the channel state information (CSI) may be changing frequently, and,

as a result, the optimization problem varies from time to time. On

the other hand, as explicit message passing may be involved in the

iterations, the optimization algorithms cannot always converge fast

enough to catch up with time varying effects, especially for large

scale problems. As is shown in our numerical example, convergence

errors would lead to performance loss in a wireless communication

system. However, it is yet unknown whether the algorithms converge

or not when the static assumption is dropped, even for strictly convex

problems. Therefore, it is highly important to the study convergence

behavior, or robustness, for primal-dual gradient algorithms under

time varying CSI.

However, towards this end there are a lot of technical challenges,

such as how to quantify the performance penalty due to the time

varying parameters, how to evaluate the cost-performance tradeoff,

and how to enhance the algorithm. These difficulties are highly

nontrivial due to the stochastic nature of wireless communication

problems as well as the complexities of the algorithms that solve

them. Although there are some preliminary works studying the ef-

fects caused by time varying parameters [3, 4], the authors in [3]

and [4] did not consider the CSI being time varying and hence their

problems have static equilibrium points.

In this paper, we shall investigate the convergence behavior of

primal-dual algorithms for solving general saddle point problems un-

der time varying CSI. We first define an equivalent virtual dynamic

system, following which we study its stability based on the Lya-

punov theory [5]. We model the dynamics of the time varying CSI

as an auto-regressive system and derive the convergence properties

of primal-dual algorithms under time varying CSI. We also quantify

the average tracking errors in terms of the average exogenous excita-

tions induced to the CSI dynamics. Furthermore, we propose a novel

adaptive algorithm to enhance the tracking performance under time

varying CSI.

2. SYSTEM MODEL AND VIRTUAL DYNAMIC SYSTEMS

In this section, we shall introduce a general saddle point problem

setup and the notion of virtual dynamic system which will be used

for stability analysis for the primal-dual algorithm.

2.1. General Saddle Point Problem

We consider a min-max optimization problem

min
λ∈R

m
+

max
x∈Rn

L(x, λ; h) (1)

The objective function L(x, λ; h) is strongly concave in x ∈ R
n

and convex in λ ∈ R
m
+ . h ∈ H ⊆ R

q is a vector parameter that

arises from specific optimization problems. In the context of wire-

less communication optimizations, the problem parameter h can be
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the CSI. Under the above convexity assumption, the min-max prob-

lem has a unique optimal solution (x∗, λ∗) = (ψx(h), ψλ(h))
where ψx : H �→ R

n and ψλ : H �→ R
m
+ are C1 functions.

It is known that solving the above min-max optimization prob-

lem (1) is equivalent to computing the saddle point of L(x, λ; h)
[6]. For a given h ∈ H, a saddle point (x∗, λ∗) of L(x, λ; h) is

defined to be a vector that satisfies L(x, λ∗; h) ≤ L(x∗, λ∗; h) ≤
L(x∗, λ; h) for all x ∈ R

n, λ ∈ R
m
+ . It is unique under the above

convexity assumption of the function L(�) [6].

The classical primal-dual gradient algorithm dynamics for solv-

ing (1) are given in the following [1]

ẋ =
dx

dt
= κ

[
∂

∂x
L(x, λ; h(t))

]T

(2)

λ̇ =
dλ

dt
= κ

[(
− ∂

∂λ
L(x, λ; h(t))

)T
]+

λ

(3)

for some step size parameter κ > 0. The projection [�]+λ is to restrict

the dynamics λ(t) in the nonnegative domain R
m
+ . For scalars ui

and λi, the projection is defined to be [ui]
+
λi

:= ui if ui > 0 or

λi > 0, and [ui]
+
λi

:= 0 otherwise. For the vector case, it is defined

entry-wise.

In most of the existing works, the convergence results for the

primal-dual algorithms solving saddle point problems were estab-

lished based on the assumption that the wireless channel state h stays

time invariant before the algorithm converges [1, 2]. In this paper,

we address the situation where the CSI h(t) changes in a similar

time scale as the primal-dual algorithm in (2)-(3).

2.2. Time Varying CSI Model

We model the CSI h(t) as a solution to the following ordinary dif-

ferential equation (ODE),

ḣ(t) =
dh(t)

dt
= A(h(t)− h̄) + u(t) (4)

where A is a real symmetric negative definite matrix, u(t) is a vec-

tor valued complex Gaussian process, and h̄ is a constant vector,

corresponding to the line-of-sight (LOS) component in the channel

model. Note that the dynamic model (4) resembles an AR(1) process

and |h(t)| has a stationary Rician distribution. Similar CSI models

are also studied in [7, 8].

2.3. Virtual Dynamic Systems

Let x̃ = (x, λ) be the joint state of the primal and dual variables in

algorithm (2)-(3) and denote the algorithm dynamics as f̃ : R
n ×

R
m
+ �→ R

n+m, where

f̃(x̃; h(t)) =

⎡⎣ κ
(

∂
∂x

L(x, λ; h(t)))T
κ
[(− ∂

∂λ
L(x, λ; h(t)))T ]+

λ

⎤⎦ . (5)

Definition 1 (Virtual Dynamic System and Equilibrium Point)
We refer to the following ODE as a virtual dynamic system

X̃ : ˙̃x =
d

dt
x̃(t) = f̃(x̃; h(t)). (6)

Moreover x̃∗ is called an equilibrium point of the vector field in (6),
if f̃(x̃∗; h(t)) = 0.

The virtual dynamic system (6) describes the algorithm dynam-

ics under time varying parameters h(t). Note that the equilibrium

point x̃∗(h(t)) is a function of h(t) and hence time varying. As a

result, we are interested in the instantaneous algorithm tracking error

x̃e(t) = x̃(t) − x̃∗(t). Let ψ(h) := (x∗(h), λ∗(h)) = x̃∗(h) be

a mapping from the CSI h ∈ H to the equilibrium point x̃∗(h(t)).
As ˙̃xe = ˙̃x − ˙̃x

∗
, we have an virtual error dynamic system X̃e de-

fined as ˙̃xe = f̃e(x̃e; h(t)) − ϕ(h)ḣ(t) where f̃e(x̃e; h(t)) :=

f̃ (x̃e + ψ(h); h(t)) and ϕ(h) := ∂
∂h
ψ(h).

It is straight forward to see that studying the convergence behav-

ior of the primal-dual algorithm is equivalent to studying the stability

of the corresponding virtual error dynamic system X̃e.

3. CONVERGENCE ANALYSIS OF DEGRADED SADDLE
POINT PROBLEMS UNDER TIME VARYING CSI

In this paper, we study saddle point functions L(x, λ;h) that are

strongly concave in primal variables x and convex in dual variables

λ. Specifically, we assume ∇2
xL � −MxI forMx > 0 and ∇2

λL 	
0. We call such a saddle point problem the degraded saddle point
problem and the associated virtual dynamic systems the degraded
virtual dynamic systems. Examples of degraded saddle point prob-

lems include the primal-dual iterations of constrained convex opti-

mization problems. For instance, the Lagrangian function (16) of the

NUM problem (15) is of this type.

We first consider the virtual dynamic system ˙̃xe = f̃e(x̃e; h(t))−
ϕ(h)ḣ(t) with a quasi-time varying CSI h(t) in (4) for u(t) = 0.

We define a partial state as ze = (xe, he). It satisfies the following

virtual dynamic system Ze

że =

[
f(xe + x∗, λe = 0; he + h̄) + ϕx(he + h̄)Ahe

Ahe

]
(7)

where ϕx(h) =
∂
∂h

x∗(h) = ∂
∂h
ψx(h) and f(�) = κ (∇xL(�))T is

the vector field of the algorithm dynamics of the primal variables x.

The following lemma summarizes the stability results for the above

virtual system że = Z(ze).

Lemma 1 (Partial Exponential Stability) Suppose the following
inequality holds,

‖ϕx(h)A‖ < κmin{2Mx, −λmax(A)} (8)

for all h ∈ H, where λmax(A) denotes the largest eigenvalue of
CSI coefficient matrix A. Then the virtual dynamic system Ze in
(7) is partially exponentially stable, i.e., there exists some positive
constants k and a such that ‖ze‖ ≤ k‖ze(t0)‖e−a(t−t0), for all
t ≥ t0, and there exists a Lyapunov function for the joint state ze
satisfying

a1‖ze‖2 ≤ V (ze) ≤ a2‖ze‖2,
∥∥∥∥ ∂V∂ze

∥∥∥∥ ≤ a4‖ze‖, (9)

V̇ (ze) =
∂V

∂ze
Z(ze) ≤ −a3‖ze‖2. (10)

Lemma 1 suggests that as long as the transient of quasi-time

varying h(t) is not changing too fast (i.e. A has small eigenval-

ues) and the sensitivity of the primal part of the equilibrium x∗
e w.r.t.

the change of h(t) is small (i.e. small ‖ϕx(h)‖), the virtual dy-

namic system Ze in (7) possesses globally exponential stability on

the partial state ze = (xe, he). Please refer to [9] for the proof.
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We now consider the degraded virtual dynamic system under the

time varying CSI model in (4) as follows

że =

[
f(�) + ϕx(he + h̄)Ahe

Ahe

]
+

[
ϕx(he + h̄)

I

]
u(t)

� Z(ze) + Φx(he)u(t). (11)

The stability result of the degraded virtual dynamic system is sum-

marized in the following theorem.

Theorem 1 (Stability of Ze(u) for Time Varying CSI) Given
‖Φx(he)‖ ≤ γx, and ‖u(t)‖2 ≤ α2, the average trajectory ‖ze‖2
of the degraded virtual dynamic system Ze(u) satisfies

‖ze‖2 =
1

T

∫ T

0

‖ze(t)‖2dt ≤ a24γ
2
x

a23
α2.

The proof can be found in [9]. As a result, we summarize the

convergence performance of the primal-dual iterative algorithm un-

der time varying CSI for a degraded saddle point problem in the

following corollary.

Corollary 1 Suppose ϕx(h) ≤ γ̄x for all h ∈ H and ‖u(t)‖2 ≤
α2, the average tracking error ‖xe‖2 for the primal-dual algorithm
under time varying CSI satisfies ‖xe‖2 ≤ a24(γ̄

2
x + 1)α2/a23.

Together with Lemma 1, the above results establish sufficient

conditions for the convergence of the a primal-dual algorithm under

time varying CSI. It shows that the tracking error of the primal-dual

algorithm under time varying CSI is bounded and scaled according

to O
(
‖u(t)‖2

)
, which specifies the variation and the time varying

rate of the CSI h(t).

4. ADAPTIVE COMPENSATION FOR THE PRIMAL DUAL
ALGORITHMS IN TIME VARYING CHANNELS

We have shown in Theorem 1 that the average tracking error of a

primal-dual algorithm under time varying CSI is O(α2γ2) where

α2γ2 is the square average of the norm of the exogenous input

Φ(he)u(t) to the virtual dynamic system Ze in (7). As a result,

one way to reduce the tracking error is to compensate the distur-

bance from the exogenous input Φ(he)u(t). We thus introduce a

compensation term Φ̂(z̃e)u(t) to Ze(u) in (7) as follows,

Z̃e(û) : ˙̃ze = Z̃(z̃e) + Φ(he)u(t)− Φ̂(z̃e)u(t) (12)

where Φ̂(z̃e) =

[
ϕ̂(x̃e, he)

I

]
, and ϕ̂(x̃e,h) is the compensation

term to be derived. Obviously, if we could set Φ̂(z̃e) = Φ(he), the

impact of the exogenous input Φ(he)u(t) can be totally suppressed.

However, as we do not have the closed form expression for the saddle

point x̃∗(h), Φ(he) cannot be obtained during the iteration.

Fortunately, for a convex optimization problem, we can al-

ways explicitly derive the optimality conditions F (x̃∗; h) =
0 [6], where F : R

n × R
m
+ �→ R

n+m ∈ C1. For exam-

ple, we have f̃(x̃∗; h(t)) = 0 by the definition of equilibrium

point, where f̃(�) is given in (5). Suppose ∂
∂x̃
F (x̃∗; h) is non-

singular. Using the implicit function theorem, ϕ̂(x̃e = 0,he) �
− (

∂
∂x̃∗F (x̃∗;h)

)−1 ∂
∂h
F (x̃∗;h) represents the movement of the

equilibrium point x̃∗(h(t)). This can be further derived into

Φ(he), and hence we choose the compensation as ϕ̂(x̃e,h) =

Fig. 1. A specific example of wireless ad hoc network. The in-

terference at each receiving node is handled by multiuser detection

(MUD) and successive decoding techniques.

− (
∂
∂x̃
F (x̃;h)

)−1 ∂
∂h
F (x̃;h), where we use the instantaneous al-

gorithm state x̃(t) as an approximation of the optimal target x̃∗(t).
As a result, the corresponding primal-dual algorithm iterations with

compensation is given by

ẋ =

[
∂

∂x
L(�; h(t)) + ϕ̂x(x, λ; h(t))

T ḣ(t)

]T

(13)

λ̇ =

[(
− ∂

∂λ
L(�; h(t)) + ϕ̂λ(x, λ; h(t))

T ḣ(t)

)T
]+

λ

(14)

where ϕ̂x(x, λ; h(t)) and ϕ̂λ(x, λ; h(t)) are the primal and dual

parts of the compensation term ϕ̂(x̃; h(t)).
The compensation terms in (13)-(14) can also be interpreted as

a predictor on where the saddle point x̃∗(h) moves. We summarize

the performance of the proposed algorithm in the following theorem.

Theorem 2 (Compensation Algorithm Performance) Suppose
the compensation term ϕ̂x(x, λ; h(t)) is Lipschitz continuous on
x satisfying ‖ϕ̂x(x(t), λ(t); h(t) − ϕ̂x(x

∗(t), λ(t); h(t))‖ ≤
Lx‖xe(t)‖ for all h(t) ∈ H and λ(t) ∈ R

m
+ , and ‖u(t)‖ =

β < a3
a4Lx

. Then the average tracking error ‖xe‖2 of the proposed
algorithm (13)-(14) asymptotically converges to 0.

Note that the convergence results here are derived under contin-

uous algorithm trajectories. For a discrete time algorithm, additional

errors are introduced due to the time lag of the algorithm time slots.

Hence the compensation algorithm in discrete time scale may not

track the moving target with no errors. However, it still has signifi-

cant performance gains against the traditional algorithms as demon-

strated in the numerical results in the following section.

5. RESULTS AND DISCUSSIONS

In this section, we simulate the performance of the proposed com-

pensation algorithm under a specific network utility maximization

(NUM) problem where the network topology is depicted in Fig.1.

The problem can be formulated as [3],

max
r�0,p∈P

∑
(s, d)∈C Usd(rsd) (15)

subject to
∑

(s, d): l∈L(s, d) rsd ≤ cl(p; h) ∀l
where the ordered pairs (s, d) denote the traffics, rsd are the corre-

sponding data rates, Usd(�) are the utility functions, cl(�) are link ca-

pacity functions and L(s, d) is the set of links that traffic (s, d) goes

through. The Lagrangian of (15) can be written as L(r,p, λ; h) =
∑

(s,d)∈C
Usd(r(s,d))−

∑
l

λl

⎛⎝ ∑
(s,d): l∈L(s,d)

rsd − cl(p; h)

⎞⎠ (16)
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Fig. 2. The convergence performance comparison of the proposed

algorithms and the baseline algorithms.

subjected to the power constraint p ∈ P . From the Lagrangian

theory [6], solving (15) is equivalent to finding the saddle point of

the Lagrangian (16).

The proposed compensated algorithm is given by (13)-(14). We

also evaluate our proposed algorithm with a distributed implemen-

tation manner, in which we impose a block diagonal structure based

on the network topology to the compensation term ϕ̂(x̃; h(t)), as

discussed in details in [9]. The three baselines are: (I) conventional

primal-dual gradient algorithm (ConPDGA) [1, 2], i.e., the primal

and dual variables are updated simultaneously in (2)-(3); (II) av-

eraging primal-dual gradient algorithm (AvgPDGA) [10], i.e., the

approximate primal solutions are generated by averaging over the

past primal solutions; and (III) perturbed primal-dual gradient algo-

rithm (PerPDGA) [11], i.e., the primal and dual variables are updated

in the gradients evaluated at perturbed points that are generated via

auxiliary mappings.

The comparison of the average tracking error e2 versus a in the

time varying CSI model is shown in Fig.2. The tracking errors have

been reduced greatly after introducing the compensation terms in

both of the proposed algorithms.

Fig.3 shows the average network throughput versus the chan-

nel fading rate a. Due to the tracking errors under time varying

CSI, transmission rates may exceed the channel capacity region and

packet drops may occur leading to a degradation of throughput. The

average throughput decreases when the fading rate a increases. The

results also show that the proposed algorithms significantly outper-

form over all the other baselines.

6. CONCLUSIONS

In this paper, we have analyzed the convergence behavior of the

primal-dual algorithm for solving a saddle point problem under time

varying CSI. The convergence results have been derived by studying

the stabilities of the equivalent virtual dynamic systems based on the

Lyapunov theory from the control theoretical approach. We showed

that the average tracking errors were given by O(α2), where α2 rep-

resents the variation and the fading rate of the CSI dynamics. Based

on these analyses, we have proposed a novel adaptive primal-dual al-

gorithm with a predictive compensation to counteract the effects of
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Fig. 3. Average network throughput versus the channel fading rate

parameter a. The average throughput decreases when the fading rate

a increases.

the time varying CSI. We showed that the average tracking error of

the proposed algorithm converges to zero despite time varying CSI.

Numerical results were consistent with our analyses and the pro-

posed algorithm demonstrated significantly better convergence per-

formance over the baseline schemes.
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