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ABSTRACT
In order to estimate the amount of energy that will be generated

by a wind farm and provide efficient power distribution planning, it
is necessary to deliver information of wind speed at all wind turbines.
This paper proposes a scheme for compressing wind speed measure-
ments exploiting both temporal and spatial correlation between the
turbine readings via distributed source coding. The proposed scheme
relies on a correlation model based on true measurements. A com-
pression scheme proposed is of low encoding complexity and uses
a particle-filtering based belief propagation decoder that adaptively
estimates the nonstationary noise of the correlation model. Simu-
lation results using realistic models show significant performance
improvements compared to the scheme that does not dynamically
refine correlation.

Index Terms— Wind Farms, Distributed Compression, Adap-
tive Decoding

1. INTRODUCTION

Wind energy generation depends on temporal wind speed, which
varies in time and space. To enable power distribution system plan-
ning, precise and timely information of current wind speed is re-
quired. This information must be conveyed in near real time to a
central substation from each of the wind turbine sites. After collect-
ing the data from all wind turbines of a wind farm, the central sub-
station can estimate temporal wind energy generation. There have
been studies in the literature on modeling wind speed, but to the best
of our knowledge, nothing has been reported on effective communi-
cations of the readings exploiting correlation between wind turbine
measurements.

This paper focuses on effectively communicating wind speed
information from multiple wind turbines of one wind farm to the
central substation. The main communication challenges are related
to the fact that the wind turbines are energy-constrained and wire-
less transmission channels are bandwidth limited. This calls for effi-
cient low-complexity compression mechanisms that must operate in
real time. Moreover, due to the proximity of neighboring wind tur-
bines, proposed compression techniques should capture spatial cor-
relation (besides temporal) of the signals measured without requiring
communications between the turbines. We resolve the above chal-
lenges through the use of distributed source coding (DSC). DSC is
an information-theoretical concept introduced in [1, 2, 3] that refers
to separate compression and joint decompression of mutually corre-
lated sources. DSC is particularly suitable for the wind turbine mea-
surement compression due to power friendly encoding at the turbine
and high coding efficiency due to exploitation of spatial correlation
among turbine sites. Indeed, the effective DSC design can capture
both temporal correlation between successive readings at a single

turbine site and spatial correlation between the readings of closely
located sites.

A prerequisite to efficient DSC code design lies in estimating
well the correlation between the measured data. Indeed, a usual as-
sumption in the design of distributed compression codes is that all
encoders and the decoder have perfect knowledge of the statistics of
the measured data, i.e., the correlation noise among sources. How-
ever, often the correlation model is unknown, or the statistics of the
sources vary over time. Indeed, in the targeted wind farm scenario,
we are dealing with compression of non-stationary sources whose
intensity and direction changes irregularly. This poses a huge chal-
lenge on the underlying compression scheme since correlation un-
predictably varies over time. Recently, in [4, 5], particle filtering
was integrated into the DSC decoding process to estimate and track
correlation changes over time. The scheme maintains low encod-
ing complexity, and introduces changes to conventional DSC coding
only at the decoder side.

In [6], using a vector autoregression (VAR) approach, a spatio-
temporal correlation model between wind speed readings in neigh-
bouring wind turbines is proposed based on true measurements in
Scotland. The model captures both the time varying nature of the
wind speed at each site as well as the spatial correlation between the
readings at neighboring sites. The additive correlation noise is in
general nonstationary which is an additional challenge for the code
design calling for effective correlation tracking.

In this paper we apply the information-theoretical concepts
of [4] to distributed compression of wind speed information from
neighbouring wind turbines. The proposed multiterminal source
coding scheme [3] is of low encoding complexity, but still able to
effectively exploit spatio-temporal correlation within measured data.
The turbines compress their measurements using DSC and send the
compressed data to the central substation, where the joint decoder
estimates and tracks the change of correlation using particle-filtering
based belief propagation. The scheme can be integrated in the IEC
61400-25 international standard for monitoring of wind power plants
and control information exchange.

2. DISTRIBUTED SOURCE CODING (DSC)

DSC considers independent compression of correlated data, where
correlation is exploited at the decoder side. Let X and Y be two cor-
related sources that should be compressed and sent to a central point
for decoding. The compression must be done independently, that is,
X and Y do not communicate, whereas decompression is joint. For
discrete X and Y and lossless compression, in 1973, Slepian and
Wolf [1] showed, surprisingly, that asymptotically, separate com-
pression can be as efficient as joint compression, as long as X and Y
are decompressed jointly. The DSC problem was introduced in [1]
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and was followed by intense information-theoretical research into
developing theoretical compression bounds and quantifying coding
gains for similar setups.

There are two types of Slepian-Wolf coding setups investigated
in the literature [7]. The first one is called non-asymmetric Slepian-
Wolf coding, where both sources need to compress their informa-
tion exploiting correlation. In the second setup, called asymmetric
Slepian-Wolf (SW) coding or source coding with decoder side in-
formation, one source, say X , needs to be compressed assuming
that another source, Y , called side information, is available, uncom-
pressed, at the decoder as side information. An interesting extension
of Slepian and Wolf’s result is reported in 1976 by Wyner and Ziv
[2] who considered a lossy version of the asymmetric SW coding. In
the Wyner-Ziv (WZ) setup, X needs to be recovered under a certain
distortion constraint and can be discrete or analogue. The extension
of general, non-asymmetric SW coding to the lossy case is referred
to as multiterminal (MT) source coding [3]. There are two types of
MT source coding schemes. One, called direct MT source coding,
where two correlated sources need to be compressed independently
and recovered jointly under distortion criteria. Another type is indi-
rect MT source coding, where a single source is observed by two (or
more) sensors, where each sensor observes only a noisy version of
the sources.

Motivated by the need for distributed compression in wireless
sensor networks, in 1999, the first practical DSC scheme, or more
precisely WZ coding scheme, based on channel codes appeared [8].
It was followed by many improved and more flexible solutions (see
[9, 10] for reviews). Practical code designs for non-asymmetric SW
coding and direct and indirect MT source coding are reported in [7],
[11] and references therein.

The main assumption in the proof of SW and WZ theorems and
in the majority of developed code designs, is the knowledge of statis-
tics at the encoder and the decoder. That is, both encoder and de-
coder must know correlation between X and Y before coding takes
place. In many cases this is an unrealistic assumption since cor-
relation varies over time. In [4], a WZ coding scheme is proposed
that unifies the process of online temporal correlation estimation and
SW decoding into a single iterative process providing better statistics
estimate and consequently improved performance. The correlation
model, assumed in [4], is based on simple additive white Gaussian
noise. The contributions of this paper are: (i) tracking of both spa-
tial and temporal correlation statistics, (ii) a direct MT source codec
design, (iii) a decoder based on particle-based belief propagation,
whose algorithm operates on a factor graph where the correlation
noise is modelled as [6], (iv) performance bounds of the proposed
direct MT source coding scheme.

3. THE PROPOSED SCHEME

In the proposed scheme, the measurements from each wind turbine
are first quantized, then independently SW-encoded for compression
and possibly entropy coded for compression of side information that
will be generated at the decoder. Both SW-encoded and entropy
coded measurements are sent to the central substation for decoding.
That is, closely located wind turbines are measuring wind speed,
compressing the readings and sending the compressed data to the
central substation for decoding. It is assumed that the relative posi-
tion of the wind turbines is known and that their compression units
are synchronized. For simplicity, we consider the case of two tur-
bines only. In the case of multiple turbines, to keep complexity low,
one would group them in pairs and independently perform coding on
each pair.

Fig. 1. The proposed scheme: encoder and decoder look.

Let X1(t) and X2(t) be the wind speed measured at wind tur-
bines 1 and 2, respectively, at time t. Let X(t) = [X1(t)X2(t)]

T .
It was shown in [6] that a good model relating the measurements in
the two turbines is given by:

X(t) = Φ1X(t − 1) + Φ2X(t − 2) + n(t), (1)

where n(t) = [n1(t)n2(t)]
T is white noise with n1(t) and n2(t)

being nonstationary noises at turbines 1 and 2, respectively; Φi, i =
1, 2 is a matrix that depends on the relative position of the turbines
and is known at the encoder and decoder.

Each turbine needs to compress its readings and send the data
to the central substation, which collects the data from both turbines
before attempting to jointly decompress them. We assume that com-
munication is always error free (via effective physical-layer protec-
tion) and focus on distributed compression next. For simplicity in
the following, we assume that Φ2 is a zero matrix, and attempt to
exploit only first-order correlation dependency between the two ran-
dom variables, that is, we simplify (1) to:

X(t) = ΦX(t − 1) + n(t). (2)

3.1. The proposed solution

The proposed scheme is shown in Figure 1. Both turbines conven-
tionally compress all odd measurements (X1(2τ − 1), X2(2τ − 1))
using scalar quantization (Q) followed by entropy coding, such as
Huffman coding. These measurements, after decompression, are
used at the decoder as side information. All even measurements
(X1(2τ), X2(2τ)) at both turbines are compressed using DSC with
scalar quantization followed by bitplane-by-bitplane low density
parity check (LDPC) encoding for syndrome forming [4]. This
way, syndrome vectors, S1 and S2 are formed, at turbine 1 and
2, respectively. Bitplane-by-bitplane compression enables more
flexible compression rate selection since different bitplanes will be
correlated in different ways.

The decoder first recovers odd measurements from both turbines
as X̂1(2τ − 1) and X̂2(2τ − 1) using conventional decompression.
Then, to recover X1(2τ), the decoder employs SW decoding using
the correlation channel model:

X̂1(2τ) = φ11X̂1(2τ − 1) + φ12X̂2(2τ − 1) + n1(2τ), (3)

with Y1(τ) = φ11X̂1(2τ −1)+φ12X̂2(2τ −1) as side information,
which follows directly from (2).
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Then, X2(2τ) is recovered as:

X̂2(2τ) = φ21X̂1(2τ − 1) + φ22X̂2(2τ − 1) + n2(2τ), (4)

using Y2(τ) = φ21X̂1(2τ−1)+φ22X̂2(2τ−1) as side information.
Note that side information captures both spatial and temporal corre-
lation. Two SW decodings are necessary, which can be performed in
parallel. Note that the proposed scheme essentially employs direct
MT source coding. It is possible to tradeoff the compression rates at
the two turbines using time-sharing. Also, it is possible to design a
asymmetric scheme where one turbine performs only DSC and the
other only conventional compression.

Next, we estimate the required compression rate assuming two
zero-mean Gaussian memoryless sources, ideal quantization, and
use the mean squared error (MSE) distortion metric. Let the required
rate to compress measurements of turbine 1 to achieve MSE D1 be:

RX1(D1) = Rodd1(D1) + Reven1(D1), (5)

where Rodd1(D1) and Reven1(D1) are the required rates for odd
and even measurements, respectively.

Since conventional compression is done on even measurements,
the required rate, at turbine 1, is:

Rodd1(D1) ≈ 1

2
log+ σ2

X1

D1
, (6)

where σ2
X1 is the variance of X1(t) (see [9] and references therein).

To find Reven1(D1), note that the correlation channel is a
Gaussian channel. Assuming that n1(2τ) is a Gaussian memory-

less source independent of X̂1(2τ − 1) and X̂2(2τ − 1) , then
Reven1(D1) is:

Reven1(D1) =
1

2
log+(

σ2
N1

D1
). (7)

where σ2
N1 is variance of n1(t). Here log+ p = log p for p > 0 or

0, otherwise. For derivation, see [9] and references therein. Similar
sum-rate (5) expression can be derived for turbine 2.

3.1.1. Adaptive Decoding

The decoding procedure is an adapted version of [4]. The com-
pressed stream (syndromes) is sent to a graph-based SW decoder,
which uses the belief propagation (BP) algorithm with particle filter-
ing (PF) to estimate current correlation noise n1(t) and decompress
the source. The PF-BP-based algorithm operates on a joint 3D factor
graph that represents the probabilistic relationship among SW cod-
ing, bit-plane coding and correlation tracking - see Figure 2 and [4]
for details of the factor graph construction and the PF-BP algorithm.
These are mapped into appropriate variables nodes and factor nodes,
where variables nodes denote unknown variables such as SW coded
bits and correlation variance and factor nodes represent the algebraic
connection among multiple variable nodes. In this paper, correlation
variable nodes are modelled as Gaussian and vary slowly over time.

In the PF-BP algorithm, messages are passed iteratively between
connected variable nodes and factor nodes in the different regions of
the graph (region 1: bipartite graph connecting correlation variable
and factor nodes, region 2: 2D SW factor-sub-graph representing
SW code used for each bit-plane) until the algorithm converges or
until a fixed number of iterations is reached. These messages (in-
ferences or beliefs on source bits and correlation) will represent the
influence that one variable has on another. Standard BP (the sum-
product algorithm), generally used for SW LDPC decoding, can
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Fig. 2. Factor graph for the PF-BP-based adaptive decoder.

handle only discrete variables. The correlation variance, however,
is not a discrete variable, since it varies continuously over time. We
therefore resort to PF, which is integrated within the standard BP
algorithm in order to handle continuous variables.

PF estimates the a posteriori probability distribution of the cor-
relation variable node by sampling a list of random particles with as-
sociated weights. Systematic resampling is applied once all weights
have been updated for all particles in each variable node to discard
particles with negligible weight and concentrate on particles with
larger weights. To maintain diversity of the particles, the new parti-
cle locations are perturbed by applying the random walk Metropolis-
Hastings algorithm. The weight of each particle is then reset to a uni-
form weight for each particle. A new codeword is generated at the
end of each iteration until the BP algorithm finds a valid codeword
or until it reaches a maximum number of iterations.

4. SIMULATION RESULTS

In this section we report results of our simulations for the case of
two neighboring turbines measuring wind speed and sending their
compressed readings to the central substation. We show the results
as coding/compression rate required for DSC versus MSE between
the original samples and reconstructed ones. All results are averaged
over 100 simulations, and MSE contains both “fine” quantization
distortion as well as “coarse” distortion due to SW decoding errors
[9]. In all our experiments we set matrix Φ to contain all 0.5, which
puts equal weight on spatial and temporal signal component. The
code length is always 5000 symbols/samples, and each sample is
quantized into q bits.

The number of particles tracking each correlation variable is
set to 10 and the variance of the correlation between particles is
σ2

γ = 0.07. These values were heuristically found to provide the
best results. The maximum number of decoder iterations was set
to 500 in case the PF-BP algorithm did not converge, and the scalar
Lloyd-Max quantizer, trained using the first block of the decoder side
information, is used for quantization. To keep the overall complexity
low and for proof-of-concept, we use low-complexity regular LDPC
codes with variable node degree 4 for SW coding [4, 5]. More com-
plex irregular codes would result in improved overall performance.
As a benchmark scheme, we use a DSC scheme that uses the same
LDPC code and the same code length for compression, but exploits
standard BP decoding without correlation tracking.

Figure 3 shows the obtained results as the required coding rate
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Fig. 3. Code rate vs. MSE for q = 4 and q = 6 and σ2 = 0.01.

vs. MSE. Each sample is quantized using scalar quantization into
either q = 4 or q = 6 bits, and SW coding is done bitplane-by-
bitplane. Thus, q different LDPC codes are used. The number of
syndrome bits per bitplane/layer is determined heuristically to mini-
mize the residual bit error rate. We initialise and maintain the corre-
lation noise unchanged as white Gaussian with variance σ2 = 0.01.

It can be seen from the figure that the proposed PF scheme out-
performs the benchmark scheme. This is despite the fact that the
correlation noise statistics do not vary over time (similar conclu-
sions are reported in [4]). As expected, at low rates, it is better to
use q = 4 quantization levels, whereas at the high rates, q = 6 pro-
vides slightly better performance. At 1 bits/sample and q = 4 the
benchmark scheme reaches the performance of the PF scheme and
the remaining noise is only the quantization noise. For q = 6, the
proposed scheme shows error-free SW decoding performance at rate
2 bits/samples, while the benchmark scheme only at 4 bits/sample.
The figure also shows the theoretical limit derived in the previous
section. Note that the additional estimation step is applied after SW
decoding. Since the resulting estimation gain diminishes as quan-
tization step size decreases (see [9], [11]) a large gap to the bound
occurs at higher rates.

The next figure shows results when the noise is white Gaussian
with variance that follows Gaussian distribution and has mean of
σ2 = 0.01. That is, the variance slowly varies over time. As ex-
pected, the proposed PF-based scheme significantly outperforms the
benchmark scheme. Thus, the proposed PF-based scheme success-
fully tracks the changes in the correlation and “adapts” BP decoding.
Note that DSC theorems only hold when the source statistics is as-
sumed to be constant. Therefore, no theoretical bound is shown in
Figure 4. One can see that the trends are very similar to the previ-
ous example. A small gap between q = 4 and q = 6 PF curves for
high rates is due to a lower quantization loss when 6 bits are used for
quantization.

5. CONCLUSION

In this paper we proposed a scheme for compressing wind speed
measurements in a wind farm. Wind speed between turbines pro-
vides important information necessary to estimate the amount of
energy that can potentially be generated by the wind farm. The
proposed solution exploits both temporal and spatial correlation be-
tween the turbine readings via distributed source coding. Moreover,
the nonstationarity of the correlation model is taken care of with the
particle-filtering based belief propagation at the decoder. The result-
ing scheme has low encoding complexity while being able to exploit
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Fig. 4. Code rate vs. MSE for q = 4 and q = 6 and varying
correlation noise.

correlation between the turbines and dynamically track the changes
in correlation noise. Simulation results using realistic models show
impressive performance improvements compared to the scheme that
does not track correlation.
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