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ABSTRACT

Typical user demands of electricity vary throughout the day,

which increases the cost to utility companies and decreases

the stability of the power system. Time-of-use (TOU) pric-

ing has been proposed as a demand-side management (DSM)

method to influence user demands. In this paper, we describe

a new approach of optimal TOU pricing strategy based on

game theory (GT-TOU). We propose models for costs due to

the fluctuating user demands to the utility companies, as well

as the user satisfaction measurement because of the differ-

ence between the demand and actual load. We design utility

functions for the company and the user, and obtain the Nash

equilibrium using backward induction and iterative methods.

Numerical example shows that our method is effective in lev-

eling the user demand by setting optimal TOU prices, in po-

tentially increasing the profit of the utility companies and en-

suring overall user benefit.

Index Terms— Time-of-use, electricity price, game the-

ory, optimization, smart grid

1. INTRODUCTION

The fluctuation of electricity demand throughout the day has

long been a problem for utility companies. During peak

hours, the utility companies face significant pressure to pro-

vide users with enough electricity, and may even have to

cut off the electricity supply of certain areas when the gap

between demand and generation is too large; while in off-

peak hours, only a small number of generators are needed

to provide sufficient electricity to meet user demand, and the

idle generators result in a waste of generation capacity. The

utility companies wish to operate the power system on a base

load, on which the system is optimized, and therefore is the

most efficient. The base load is not the highest load that a

unit can provide, but operation far away from base load is

not cost efficient and may harm the stability of the power

system. Therefore, utility companies wish the user demand to

remain relatively “constant” during the day, so that they can

design and build generation units according to the “constant

demand”.

Time-of-use (TOU) pricing is an efficient way of demand

side management (DSM), which utility companies can em-

ploy to influence user behavior. By setting different prices

during the day, the utility company can encourage customers

to shift their demand to off-peak hours, resulting in a more

leveled demand curve. In [1], Caves et al. provides economet-

ric analysis of a TOU pricing experiment in Wisconsin show-

ing that short term electricity demand is not inelastic, and that

peak and off-peak electricity are partial substitutes. Hartway

et al. demonstrated in [2] through an experiment that TOU is

profitable to a utility, and in general, the customers are satis-

fied with the TOU price option. In recent years, time-of-use

pricing and real time pricing have attracted growing attention

both in academia and in industry [3]-[6], especially with the

development of smart grid, which enables the implementation

of time-dependent pricing.

We propose an optimal time-of-use pricing strategy for

smart grids using game theory (GT-TOU). A day is divided

into N periods, and the price is optimized for each time pe-

riod. The goal is to influence the user behavior through TOU

pricing such that the load throughout the day is leveled. Be-

cause utility companies seek to maximize profits while users

seek minimized costs and assured supply, we consider a game

between utility companies and users using a multi-stage game

model. In this model, the utility company sets the electricity

prices, while the customers respond to the price by adjusting

the amount of electricity they use. Utility functions are de-

signed for the company and the users, in which we take into

account the cost of varying demands to the utility company,

and the satisfaction measurement of users. Our pricing strat-

egy is different from the real-time pricing in [5] and [6]. As

described in [5], users are not well prepared to respond to

the time-varying prices. Therefore, price prediction is often

required to implement real-time pricing [5], and energy man-

agement controller may be needed to help users manage their

power usage [6]. In contrast, in our model users are informed

of the price ahead of time, and the TOU prices remain stable

during a relatively long time unless there is significant change

in the characteristics of user demands or generation cost. We

believe these features would make our model easier to imple-

ment in practice.

The remainder of this paper is organized as follows:

Section 2 describes the notation and formation of the game

model; Sections 3 and 4 solve the equilibrium of the game;

a numerical example is given in Section 5; and the paper is
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concluded in Section 6.

2. NOTATION AND MODEL

We divide a day into N periods, where N depends on the sce-

nario of the application. For hourly based pricing N = 24.

Let c = [c1, c2, . . . , cN ]T denote the unit marginal cost of

electricity, p = [p1, p2, . . . , pN ]T denote the unit sales price

of electricity, g = [g1, g2, . . . , gN ]T denote the electricity

generation, d = [d1, d2, . . . , dN ]T denote the user demand in

a constant price scenario where the constant price is p0, and

l = [l1, l2, . . . , lN ]T denote the actual user load in response to

the time-of-use price. The subscripts denote the correspond-

ing time period.

We model the utility function of the company u1 as:

u1 =
N∑

k=1

pklk −
N∑

k=1

ckgk − v(g) (1)

where v(g) corresponds to the cost caused by varying user

demand during the day. We model this cost using the variance

of electricity generation multiplied by a parameter μ, i.e.,

v(g) = μ

∑N
k=1(gk − ḡ)2

N
, (2)

where ḡ is the average electricity generation during the day.

The cost function C of users include the cost they pay for the

electricity and their satisfaction with the service, i.e.,

C =
N∑

k=1

pklk +
N∑

k=1

sk(lk, dk), (3)

where sk(lk, dk) denote the user satisfaction function. The

user satisfaction function quantitatively models the user sat-

isfaction caused by the gap between demand and actual load.

If the actual load is smaller than the demand, the function

value is positive, meaning the users are not satisfied. The sat-

isfaction increases faster as the actual load decreases. On the

other hand, if the actual load is greater than the user demand,

the function value is negative, meaning the users are satisfied.

However, the increase of satisfaction slows down as the ac-

tual load continues to increase, because the users won’t be

“infinitely” happier when they use more electricity. When the

actual load equals the user demand, the function value is zero.

Therefore the satisfaction function sk(lk, dk) should satisfy

the following conditions:

1. If lk = dk:

sk(lk, dk) = 0.

2. If lk > dk:

sk(lk, dk) < 0,
∂sk
∂lk

< 0,
∂2sk
∂2lk

> 0.

3. If lk < dk:

sk(lk, dk) > 0,
∂sk
∂lk

< 0,
∂2sk
∂2lk

> 0.

In this paper we select sk(lk, dk) as:

sk(lk, dk) = βk[(
lk
dk

)αk − 1], (4)

where 0 < αk < 1 and βk < 0. Other proper functions can

also be selected based on the nature and behavior of users.

The utility function of users is then the negative of their cost

function C, i.e.,

u2 = −C = −
N∑

k=1

pklk −
N∑

k=1

sk(lk, dk). (5)

In this game model, we need to maximize the utility func-

tions of both the company and the users. The optimization

problem is described as:

(p∗, g∗) = argmax
p,g

u1 =
∑N

k=1

[
pklk − ckgk − μ

N (gk − ḡ)2
]

l∗ = argmax
l

u2 = −∑N
k=1

{
pklk + βk[(

lk
dk
)αk − 1]

}
subject to 0 ≤ lk ≤ gk ≤ gmax, k = 1, 2, . . . , N

ck ≤ pk, k = 1, 2, . . . , N.

In this preliminary work, we assume that the generation

equals user load, i.e., g = l, and that the actual load is less

than the generation capacity gmax. Then, the problem can be

simplified as:

p∗ = argmax
p

u1 =
∑N

k=1

[
pklk − cklk − μ

N (lk − l̄)2
]
(6)

l∗ = argmax
l

u2 = −∑N
k=1

{
pklk + βk[(

lk
dk
)αk − 1]

}
(7)

subject to ck ≤ pk, k = 1, 2, . . . , N

0 ≤ lk, k = 1, 2, . . . , N.

3. OPTIMIZING UTILITY FUNCTIONS

Since this is a multi-stage game, we use backward induction

[7] to solve for the equilibrium. The utility company takes

action first by setting the electricity price, and then customers

adjust the amount of electricity they use. Therefore, we first

minimize u2 with respect to {lk}Nk=1, then plug the minimizer

into u1 and optimize u1 with respect to {pk}Nk=1.

3.1. Optimal Demand Response to Price

In order to find user’s optimal demand response to the price

set by utility companies, we consider the electricity prices of

different time periods {pk}Nk=1 as given, and set the first order
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derivatives of u2 with respect to {lk}Nk=1 to be zero. Then we

get the optimal response {l∗k}Nk=1 as:

l∗k = (− pkdk
αkβk

)
1

αk−1 dk, k = 1, 2, . . . , N. (8)

The form of (8) is interesting as it reminds us of the price

elasticity of demand [8] in economics, which measures the

percentage change in demand quantity caused by percentage

change in price. Let ε denote the elasticity constant, d denote

the demand and p denote the price. The relationship between

change of price and change of demand can be described as:

∂d/d

∂p/p
= ε, (9)

where ε is almost always negative, because in most cases

the increase of price will result in reduced demand, and vice

versa. We can also assume ε to be constant when the changes

of d and p are not too big. After integration on both sides and

simple computation, we obtain the following relationship:

d̃ =

(
p̃

p0

)ε

d0. (10)

d0 and p0 are the original demand and price, respectively, and

d̃ is the new demand corresponding to the new price p̃. It can

be observed that (8) is in exactly the same form as (10), if we

select parameters {αk}Nk=1 and {βk}Nk=1 such that εk = 1
αk−1

and p0 = −αkβk/dk. Equation (8) can then be rewritten as:

l∗k =

(
pk
p0

)εk

dk, k = 1, 2, . . . , N. (11)

Note that dk and l∗k in (11) correspond to d0 and d̃ in (10),

respectively. We will use (11) instead of (8) in the rest of this

paper, because on the one hand, it will simplify the notation

for the rest of this paper; on the other hand, the parameters

have practical meanings.

3.2. Optimal Pricing Based on User Response

In section 3.1 we obtained the optimal response of users to

electricity prices. In this section, we will maximize the utility

function of companies by finding the optimal pricing strategy

based on the user response. In order to maximize u1, we take

derivatives of u1 with respect to {pk}Nk=1. Note that in this

case, user loads {lk}Nk=1 are functions of the prices {pk}Nk=1.

∂u1

∂pk
= lk + pk

∂lk
∂pk

− ck
∂lk
∂pk

− 2μ

N
(lk − l̄)

∂lk
∂pk

(12)

Plug (11) into (12), and let (12) equal zero, we obtain the

optimal price p∗ as a function of user response l∗:

p∗k =
εk

1 + εk
ck +

2μ

N
· εk
1 + εk

(l∗k − l̄∗). (13)

Equation (13) provides an intuitive interpretation of the

optimal price p∗. If the actual load lk at time period k is

higher than the average load l̄, namely lk − l̄ > 0, then the

price is raised; if the actual load at time period k is lower than

average, i.e., lk − l̄ < 0, then the price is reduced.

4. SOLVING FOR THE EQUILIBRIUM

So far we have obtained p∗ and l∗ as functions of l∗ and p∗,

respectively, as follows:

{ p∗k = εk
1+εk

ck + 2μ
N · εk

1+εk
(l∗k − l̄∗)

l∗k =
(

p∗
k

p0

)εk
dk, k = 1, 2, . . . , N

(14)

The Nash equilibrium, which is the optimal strategy pair

(p∗, l∗), can be obtained by solving (14). Since there are 2N
equations, {pk}Nk=1 depend on all {lk}Nk=1, and {lk}Nk=1 are

not linear functions of {pk}Nk=1, it is extremely difficult, if not

impossible, to find a closed form solution. Therefore, we use

two iterative methods to solve (14) in this section.

4.1. Newton-Raphson iteration

In order to employ the Newton-Raphson iteration method, we

first reduce the number of equations by combining each equa-

tion pair. Plug (11) into (13) and then let

fk(p) = pk−
εk

1 + εk
ck−

2μ

N
· εk

1 + εk

[(
pk

p0

)εk

dk − 1

N

N∑
i=1

(
pi

p0

)εi

di

]
.

(15)

We now have only N equations {fk(g) = 0}Nk=1. Denote

f(p) = [f1(p), f2(p), · · · , fN (p)]T , (16)

and then we obtain
∂f(p)
∂pT , where

∂fk(p)

∂pk
= 1− 2μ

N

(
1− 1

N

)
ε2k

1 + εk

p
εk−1
k

p
εk
0

dk, (17)

∂fk(p)

∂pi
=

2μ

N2

εkεi
1 + εk

pεi−1
i

pεi0
di, k �= i. (18)

After that, we apply Newton-Raphson iteration to solve

for the optimal p∗ and l∗:

1. Initialize p(i) = p(0)

2. p
(i+1)
k = p(i) −

(
∂f(p)
∂pT

)−1

f(p)

3. Repeat 2 until ‖p(i) − p(i−1)‖ ≤ δ1.

4.2. Alternating minimization

Although the Newton-Raphson method is fast in conver-

gence, the convergence depends on the initial value and also

on the parameters. When the Newton-Raphson iteration has

convergence issues, we employ alternating minimization as
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Fig. 1: Comparison of customer prices and loads between

constant pricing and the proposed GT-TOU pricing.

Table 1: Comparison of company and user utility function

Total Peak Unit
Strategy

Load Load Price
u1 u2

Case 1 Const. 433.50 24.20 1.040 227.46 -450.84

μ = 0.2 GT-TOU 448.89 21.67 1.018 230.40 -435.51

Case 2 Const. 433.50 24.20 1.040 200.94 -450.84

μ = 1.0 GT-TOU 450.26 19.68 1.008 227.93 -448.91

an alternative way to solve (14), which works well for large μ.

1. For each k: Initialize p
(i)
k = p

(0)
k , l

(0)
k =

(
p(0)

p0

)εk
dk,

l̄(0) = 1
N

∑N
k=1 l

(0)
k ;

2. For each k: l
(i)
k = N(1+εk)

2μεk

(
p
(i−1)
k − ckεk

1+εk

)
+ l̄

(i−1)
k ,

l̄(i) = 1
N

∑N
k=1 l

(i)
k , and p

(i)
k =

(
l
(i)
k

dk

) 1
εk

p0;

3. Repeat 2 until ‖lk − lk−1‖ ≤ δ2.

5. NUMERICAL EXAMPLE

In this numerical example, we adopted hourly based pricing

by dividing a day into N = 24 equal time periods. Provided

the demands {dk}Nk=1 corresponding to constant price p0, we

used the game based model to find the optimal pricing strat-

egy and user load. The price elasticity ε was assumed to be

constant during the day and equals −2.0. We ran the simula-

tion twice with different parameter μ selected as 0.2 and 1.0
respectively. The other parameters were set to be the same.

Fig.1 shows a comparison of prices and loads using con-

stant and GT-TOU pricing. When using GT-TOU pricing, the

price is set higher in peak hours, and lower in off-peak hours.

The figure also illustrates the effect of cost due to fluctuating

user demands: when μ is large, such cost is high, and thus

greater gap between peak hour price and off-peak hour price

is set by utility companies to better influence user behavior.

Table 1 shows comparison of utility functions using constant

pricing and GT-TOU pricing, from which we conclude that

when applying GT-TOU prices: (i) the peak hour load signifi-

cantly decreases; (ii) the utility functions of both the company

and users increase; and (iii) users pay a lower unit price for

the electricity.

6. CONCLUSION

We proposed an optimal time-of-use pricing strategy for elec-

tricity using game theory. We designed utility functions for

both utility companies and users, and solved for the Nash

equilibrium. The Nash equilibrium provides us with optimal

prices and user response. In practice, the parameters of the

model can be estimated using historic data from utility com-

panies. This model is flexible, as we can modify the utility

functions according to the nature of different types of util-

ity companies and users. Simulation results illustrate that our

strategy can level user demand, increase the profits of the util-

ity companies, and reduce bills for electricity users. The lev-

eled user demand also helps ensure a more stable power sys-

tem. We are now incorporating different types of users, and

making the model of the cost to utility companies due to fluc-

tuating user demands more realistic.
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