
HEURISTIC RATIONAL MODELS IN SOCIAL NETWORKS

Ceyhun Eksin, Alejandro Ribeiro
Department of Electrical and Systems Engineering, University of Pennsylvania

ABSTRACT

A network of social agents wants to minimize a global cost given
by a sum of local terms involving convex nonlinear functions of self and
neighboring variables. Agents update their variables at random times ac-
cording to a random heuristic rule that is on average optimal with respect
to the local cost given values of neighboring agents. When all agents ap-
ply heuristic rational optimization, convergence result shows that global
cost visits a neighborhood of optimal cost infinitely often with probabil-
ity 1. An exponential probability bound on the worst deviation from op-
timality between visits to near optimal operating points is also presented.
Models of opinion propagation and voting are cast in the language of
heuristic rational optimization. Numerical results are presented for the
opinion propagation model on both geometric and small-world network
structures.

Index Terms— Distributed network optimization, social networks.

1. INTRODUCTION

Social network models entail a set of agents with different individual in-
terests and limited information gathering capabilities. A central question
in social networks concerns the translation of local actions into social
welfare of the entire network. Existing work frames this question as a dis-
tributed network optimization problem where global objective –welfare
of the society– is determined by the agents through iterative application
of local optimization rules that update local variables relying on infor-
mation received from neighboring agents. However, models of social
network behavior as distributed network optimization often rely on unre-
alistic assumptions on local optimization and update rules, connectivity
structure, and information passing. While existing results, either in the
social systems [1, 2] or network optimization [3, 4] literature, question
some of these assumptions, it is always assumed that agents take actions
that are optimal with respect to the observed variables. This is not very
realistic in social networks as optimal behavior requires improbable fore-
sight.

We propose and study more realistic models whereby agents exe-
cute actions that are optimal in an average sense only. We name these
rules and the agents that use them as heuristic rational, since we think of
them as the application of a heuristic rule that is intent on being optimal
even though it may not be so. We show that models commonly used to
study propagation of opinions in social networks [5–7] can be cast in the
language of heuristic rational optimization. We then move on to study
the behavior of networks composed of heuristic rational agents and show
that: (i) The global network behavior visits a neighborhood of optimality
infinitely often. (ii) The probability of straying away from this neigh-
borhood by more than a given amount is exponentially bounded. These
results can be interpreted as an explanation for the emergence [cf. (i)] and
sustenance [cf. (ii)] of global network behavior that is close to optimal
despite imperfect decision making of individual agents in social systems.

The paper begins by describing the induction of global behavior
through the minimization of a cost given by a sum of local terms involv-
ing nonlinear functions of self and neighboring variables. At random
times, agents observe current values of their neighbors’ variables and
apply a heuristic rule with the intent of minimizing the global cost with
respect to the selection of their local variables. These heuristic rules need
not be optimal but we assume that they are so in expectation (Section 2).
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We proceed to describe how opinion propagation [5] and voter [6,7] mod-
els in social networks can be interpreted as a heuristic rational version
of local averaging models [3] (Section 2.1). Because of the randomness
associated with heuristic rational rules we do not expect convergence to
optimal global behavior. Consequently, we characterize the difference
in the yield of optimal variables and the values achieved by heuristic
rational rules by showing that a neighborhood of optimality is visited in-
finitely often with probability 1 (Theorem 1, Section 3). We further show
that between visits to optimality the probability of the gap in the yield
of agents’ variables exceeding a given value is bounded exponentially
(Theorem 2, Section 4). We close the paper with numerical results for
opinion propagation model in social networks (Section 5).

2. LOCAL HEURISTIC RATIONAL OPTIMIZATION

Consider a network of N agents represented by the symmetric graph
G = (V,E) where vertices i ∈ V denote agents and edges (i, j) ∈ E
connections between them. Agent i can only interact with neighboring
nodes n(i) = {j : (j, i) ∈ E} that form an edge with her. We denote
as Ni := #(n(i)) the cardinality of the number of neighbors. Each of
the agents i ∈ V is associated with corresponding variable xi ∈ R

n

and a convex function f0i(xi). Each of the edges (i, j) ∈ E is affiliated
with a convex function fij(xi, xj) that depends on the agent variables
at the vertices of the given edge. To maintain symmetry we require that
functions fij(xi, xj) and fji(xj , xi) be equal,

fij(xi, xj) = fji(xj , xi), for all i, j ∈ n(i). (1)

Variables xi are also constrained to the convex set Xi in that allowable
values satisfy xi ∈ Xi ⊆ R

n. Define the vectors x := {xi}i∈V grouping
all network variables and xn(i) := {xj}j∈n(i) containing the variables of
all neighbors of i. Further introduce the set X :=

∏
i∈V Xi to represent

the Cartesian product of sets Xi.
The function

fi(xi, xn(i)) := f0i(xi) +
∑

j∈n(i)

fij(xi, xj) (2)

represents a cost that agent i would like to make as small as possible
by proper selection of its variable xi ∈ Xi. Since this cost depends on
neighboring variables xn(i), it follows that xi and xj for j ∈ n(i) have
to be jointly chosen. But these neighboring variables are jointly chosen
with their respective neighbors, which depend on the values of their cor-
responding neighbors, and so on. It follows that as long as the network is
fully connected, cost minimization requires simultaneous selection of all
variables xi. This is not a plausible model of network behavior.

Alternatively, suppose that at random time t ∈ R
+, agent i observes

the values of neighboring variables xn(i)(t). Given the interest in mini-
mizing the local cost fi(xi, xn(i)) in (2), a rational action for this agent is
to update her variable by selecting the value that minimizes fi(xi, xn(i))
given the observed values of neighboring variables,

x̃i(t) = argmin
xi∈Xi

fi
(
xi, xn(i)(t)

)
. (3)

Since the update in (3) is based on information that can be locally ac-
quired and is unilaterally executed by i it constitutes a possible model
for network optimization, which has indeed been used to model, e.g.,
the propagation of opinions in a social network; see [5] and Section 2.1.
However, it is not always accurate to assume that agents apply optimal
policies perfectly. In, e.g., social systems, agents apply heuristic rules in
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their decision making which are prone to randomness and suboptimality.
To model this type of network we introduce the concept of heuristic ratio-
nal actions as random actions that are optimal on average as we formally
define next.

Definition 1 Consider network agent i associated with variable xi and
denote as xn(i)(t) the values of neighboring variables at time t. We say
that a probabilistic rule xi(t) ∈ Xi is heuristic rational if and only if its
expectation is a rational action as defined in (3),

E
[
xi(t)

∣∣xn(i)(t)
]
= x̃i(t) = argmin

xi∈Xi

fi
(
xi, xn(i)(t)

)
. (4)

This paper considers network optimization models that consist of a ran-
dom activation rule that determines when agents modify their variables
and a heuristic rational rule that determines how the active agent updates
her local values. Activations are indexed by the non-negative integer vari-
able k ∈ N with k = 0 denoting the initial state. Variable k �= 0 denotes
the kth activation that occurs at time tk. Each agent has a positive proba-
bility of becoming active at any given time interval. Hence, kth activation
almost surely involves a unique agent i = ik modifying her local variable
xi = xik . When an activation occurs, variables xi(tk) stay unchanged
for all agents i �= ik and are updated to xik (tk) for terminal ik. Update
rules are restricted to depend only on neighboring variables xn(ik)(tk)
and are assumed heuristic rational in the sense of Definition 1.

Summing up the local costs fi(xi, xn(i)) in (2) yields the global cost

f(x) :=
∑
i∈V

fi(xi, xn(i)) =
∑
i∈V

f0i(xi) +
∑

i∈V,j∈n(i)

fij(xi, xj), (5)

that measures the optimality of configuration x := {xi}i∈V from a
global perspective – as opposed to fi(xi, xn(i)) that measures the op-
timality of configuration xi from a local perspective. In particular, there
exist globally optimal configurations x∗ that achieve the minimum possi-
ble cost p∗ = f(x∗) given by

p∗ := min
x∈X

f(x) = min
x∈X

∑
i∈V

fi(xi, xn(i)). (6)

The goal of this paper is to compare the sequence of iterates x(tk) gener-
ated by recursive application of heuristic rational rules with the optimal
configuration x∗. More to the point, we define the stochastic process
{Fk}k∈N of optimality gaps with elements

Fk := f(x(tk))− p∗. (7)

Our results will establish that the optimality gap Fk achieves a small
value with probability 1 infinitely often (Theorem 1, Section 3). We will
also establish that the largest value achieved in each of these excursions
follows an exponential probability bound (Theorem 2, Section 4). Before
proceeding with the analysis, we discuss examples of network optimiza-
tion with heuristic rational agents in social networks.

2.1. Opinion Propagation
The propagation of opinions in a social network can be cast in the lan-
guage of heuristic rational optimization. In this context we interpret
xi ∈ [−1, 1] as the opinion of a social agent. Consider a social net-
work where a subset S of agents are stubborn and have fixed extreme
opinions xi = {−1, 1} for all i ∈ S while other agents are compli-
ant i.e. value agreement with friends with whom they are directly con-
nected [5]. We model the desire for agreement through the penalty func-
tion fij(xi, xj) = (1/4)(xi − xj)

2. The resulting cost for disagree-
ment for agent i is fi(xi, xn(i)) = (1/4)

∑
j∈n(i)(xi − xj)

2 as follows

from (2) in which function f0i(xi) = 0. Through minimization of this
quadratic cost we have that the rational action, as defined by (3), for agent
i at time t is

x̃i(t) =
1

Ni

∑
j∈n(i)

xj(t). (8)

This action amounts to taking a local average of opinions in the net-
work [3]. A heuristic rational rule xi(t) randomizes x̃i(t) to account
for the fact that the average in (8) is not computed exactly but rather
guessed. The presumption in Definition 1 is that these guesses are correct
on average in that E [xi(t)] = x̃i(t).

A more interesting example of heuristic rationality stems from the
observation that agents are not likely to consider opinions of all of their
neighbors at each decision but rather rely on interactions with random
subsets of friends. Accounting for the fact that interactions occur between
a member of the network and subsets of her friends is the intent of voter
models [6,7]. The model of opinion propagation in this case replaces the
average in (8) by the average of a random sample of friends

xi(t) =
1

#(ñi(t))

∑
j∈ñi(t)

xj(t), (9)

where ñi(t) ⊆ ni denotes the random interaction group at time t. If all
subsets of friends are equally likely to be chosen it follows that actions
x̃i(t) in (8) and actions xi(t) in (9) are such that E [xi(t)] = x̃i(t). Thus,
we can think of voter models [cf. (9), [6,7]] as heuristic rational rules for
the local averaging model [cf. (8), [3]].

3. NEAR OPTIMALITY

The sequence of iterates x(tk) generated by recursive application of
heuristic rational rules is akin to a stochastic version of block coordi-
nate descent on the function f(x). In coordinate descent algorithms
minimization is attempted by alternation between descents on different
subsets of variables chosen according to a given rule. In the case of
heuristic rational optimization we can identify agents’ variables as coor-
dinate blocks and random activation as the selection rule. The structure
of the local cost fi(xi, xn(i)) in (2) allows for the distributed imple-
mentation of block coordinate descent. Given this correspondence, we
present results that show convergence to a neighborhood of the optimal
configuration x∗, [cf. (6)] in some sense if the following assumptions on
the cost function f(x) and the random activation rule are satisfied.

(A1) Strong convexity. The global cost f(x) is strongly convex in that
there exists a constant m > 0 such that for any pair of points x ∈ X and
y ∈ X it holds

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
||y − x||2. (10)

(A2) Lipschitz gradients. Gradients of the global cost f(x) are Lips-
chitz in that there exists a constant M > 0 such that for any pair of
points x ∈ X and y ∈ X it holds

f(y) ≤ f(x) +∇f(x)T (y − x) +
M

2
||y − x||2. (11)

(A3) Random activation. At any given time t, all agents are equally
likely to become active.

(A4) Bounded variance The mean square error of the heuristic rational
action xik (tk) with respect to the corresponding rational action x̃ik (tk)
is bounded [cf. (4)].

E
[‖xik (tk)− x̃ik (tk)‖2

] ≤ σ2. (12)

Assumptions (A1) and (A2) are typical in convergence analysis of de-
scent algorithms. They are satisfied by the examples discussed in Sec-
tions 2.1. Assumption (A3) states that activations occur at random times
and that all agents are equally likely to become active in any given time
interval. This assumption is also common; see, e.g., [6]. Among other
possibilities it can be satisfied if all agents have an activation clock based
on independent exponential waiting times with equal means. This is more
a matter of simplifying discussion than a fundamental requirement. It can
be substituted by laxer conditions as we discuss in Remark 1. Assump-
tion (A4) bounds the average irrationality of each agent by bounding the
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deviation from the rational decision (3). We emphasize that this bound
holds on a mean square sense. It is possible to have isolated actions that
are arbitrarily bad. Our results are parametric on the irrationality bound
σ2. As time increases the optimality gap Fk of the global network behav-
ior approaches a neighborhood of zero whose size is determined by the
irrationality bound σ2.

The following result characterizes the convergence behavior of se-
quence of heuristic rational updates with respect to optimality – see [8]
for proof.

Theorem 1 Consider the heuristic rational sequence of iterates x(tk)
such that at time tk agent ik updates her local variables xi(tk) accord-
ing to a heuristic rational update [cf. Definition 1] with corresponding
optimality gaps Fk [cf. (7)]. Define the best optimality gap by time tk as
F best
k := minl∈[0,k] Fl. If assumptions (A1)-(A4) hold, it follows that

lim
k→∞

F best
k ≤ Mσ2

2β
, a.s. (13)

i.e. the optimality gap becomes smaller than Mσ2/2β at least once for
almost all realizations.

According to Theorem 1 it holds that for almost all realizations the op-
timality gap Fk approaches or becomes smaller than σ2M/2β at least
once as k grows. Theorem 1 also implies that this happens infinitely of-
ten. Indeed, if at given time k0 we have Fk0 > σ2M/2β a simple time
shift in Theorem 1 permits concluding that there exists a future time k at
which Fk ≤ σ2M/2β.

For Fk to become small we need to have the current network config-
uration x(k) close to the optimal configuration x∗. Consequently, The-
orem 1 implies that x(k) enters into a neighborhood of the optimal con-
figuration infinitely often. The volume of this neighborhood increases
with increasing mean squared error of the heuristic rule σ2, increasing
Lipschitz constant M , or decreasing condition number β. The condition
number β := m/(MN) is small for functions f(x) having m 	 M cor-
responding to ill conditioned functions with elongated level sets. There-
fore, the dependence on β captures the difficulty of minimizing the cost
f(x). The constant M is of little consequence as it plays the role of a nor-
malizing constant. If we multiply the function f(x) with a constant, both,
the optimality gaps Fk and the Lipschitz constant M are multiplied by the
same constant. The dependence on the mean squared error σ2 captures
the increase in global suboptimality as agents’ behaviors become more
erratic.

If the optimality gap Fk approaches a small value infinitely often but
can stray away from it, the question arises of what the process’s behavior
is between visits to the optimality neighborhood. We answer this question
in the following section after the following remark.

Remark 1 Results in this section follow with slight modifications when
the assumption that all agents are equally likely to become active is re-
laxed to the assumption that all agents have possibly different but strictly
positive probabilities of becoming active. This less restrictive assump-
tion still ensures that when the configuration x(t) is not optimal there is
always a positive probability of the rational rule descending towards the
optimum.

4. EXCURSIONS FROM NEAR OPTIMALITY

Although Theorem 1 shows that the network state moves within a close
boundary of the optimal configuration almost surely and infinitely often,
it does not claim a guarantee on staying close to the optimal value. In
fact, it is easy to see that in some particular examples the process Fk is
almost sure to move out of the optimality neighborhood Fk ≤ Mσ2/2β
and even become arbitrarily bad with small but nonzero probability. This
may happen in the unlikely but not impossible situation in which the vari-
ations in the heuristic rational rule cancel out the intended drive towards
optimality. In this section, we derive an exponential probability bound on

these excursions from optimality. The bound shows that while arbitrar-
ily bad excursions may be possible they happen with exponentially small
probability.

To formally define excursions away from the optimality neighbor-
hood, suppose that at given iteration k, the optimality gap is Fk = (1 +
ρ)Mσ2/2β, i.e., larger than the neighborhood border by a factor ρ > 0.
Further consider a given value γ > Fk. We define excursion as the tra-
jectory Fk, Fk+1, . . . , Fk+L of the optimality gap until the process re-
turns to a value Fk+L < Fk smaller than the given gap Fk from which
the excursion started. Notice that L is a random stopping time given by
L = minl>0

(
Fk+l < Fk

)
. In particular, we are interested in the worst

value F †
k = max(Fk, Fk+1, . . . , Fk+L) reached during the excursion.

In formal terms we define F †
k as

F †
k := max

l≥0

(
Fk+l, for l ≤ min

j>0

(
Fk+j < Fk

))
. (14)

Our goal here is to determine the probability P
(
F †
k ≥ γ

)
that the worst

value attained during the excursion exceeds the given γ. To bound
the probability P

(
F †
k ≥ γ

)
we need the following additional assump-

tion.

(A5) Bounded Increments. The difference on optimality gaps between
successive iterations is almost surely bounded by a finite constant κ > 0,
i.e., for all times k we have that

P
(|Fk+1 − Fk| ≤ κ

∣∣Fk

)
= 1. (15)

A particular case in which Assumption (A5) is satisfied is when the func-
tions fij(xi, xj) are bounded for all feasible values xi ∈ Xi and xj ∈
Xj . Assumption (A5) can be alternatively satisfied if the differences
‖xik (tk) − x̃ik (tk)‖ between rational and heuristic rational actions are
almost surely bounded. This latter condition is more stringent than the
finite variance requirement of Assumption (A4). For the opinion propa-
gation scenario in Section 2.1, the bound in (15) is the maximum number
of neighbors, i.e., κ = maxi(Ni). This corresponds to the most con-
nected agent flipping its opinion from −1 to 1.

The exponential bound on P
(
F †
k ≥ γ

)
is stated in the following

theorem – see [8] for proof.

Theorem 2 Assume that at time k the value of Fk exceeds the optimal-
ity neighborhood of Theorem 1 by a factor ρ > 0, i.e., Fk = (1 +

ρ)Mσ2/2β, and let F †
k be the worst optimality gap achieved during the

subsequent excursion as defined in (14). If assumptions (A1)-(A5) hold,
then, for arbitrary given constant γ we have

P
(
F †
k ≥ γ

∣∣Fk

)
≤ e

−c(γ−Fk), (16)

with c = 2ρMσ2/[(ρMσ2)2 + κ2].

According to Theorem 2 the probability of F †
k being larger than some

arbitrary constant γ decreases exponentially. This is a bound on the
worst optimality gap attained during the process starting at a level set
Fk = (1 + ρ)Mσ2/2β and ending at or below the starting level set Fk.
This result provides a way to characterize process behavior outside the
convergence region. The exponential bound given by (16) is dependent
on a scaling coefficient c. Scaling coefficient c is inversely proportional
with the bound on excursion probability. Accordingly, an increase in
any of the constants σ2, κ, M or ρ decreases scaling coefficient c push-
ing excursion probability bound (16) up. The effect of increase in mean
squared error σ2 would imply decrease in predictability of individual ac-
tions possibly deteriorating optimality gap. Increment bound κ given in
(A5) represents the maximum possible change in optimality gap between
subsequent steps. If the increment bound κ is larger, the process can jump
to a larger optimality gap in one step. In the extreme case that the process
can possibly have infinite increments, the excursion bound probability
becomes the trivial value of 1. Lipschitz constant M is a property of
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Fig. 1. Examples of two network structures for opinion propagation in
social networks. Network (a) is a geometric network. Connections are
drawn between agents situated less than 20 units apart. Dotted squares
mark two stubborn agents in the set S = {1, 2}. Network (b) is a small-
world network constructed from network (a) through a cycle of rewiring
(cf. Section 5) with probability pr = 0.1. Color encodes opinions at time
t = 100.
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Fig. 2. Agent opinions as a function of time. (a) and (b) refer to opinion
evolution for the networks in figs. 1(a)-(b), respectively. Lines represent
the path xi(t) of each agent’s opinion up until time t = 100.

the objective function and will be large for ill conditioned functions with
elongated level sets. Constant ρ indicates how far away F †

k is at the start
of the process from near optimality region. Scaling coefficient decreases
linearly as ρ grows but at the same time constant γ and Fk has to grow in
parallel canceling the effect of ρ on (16).

Next, we give numerical examples for an opinion propagation sce-
nario in which agents are heuristic rational rule decision makers.

5. SIMULATION

We consider the model of opinion propagation with stubborn agents pre-
sented in Section 2.1 on two network models. For the first network, con-
nectivity is generated using a geometric model. We drop a group of N =
100 agents on a 100unit×100unit two dimensional field. The coordinates
ri of user i are chosen inside this square uniformly at random. The neigh-
borhood set of agent i consists of all agents j positioned within a cut-off
distance d = 20unit of ri, i.e., n(i) = {j : ‖ri − rj‖ ≤ d, j �= i}.
Fig. 1(a) shows geometric network structure in which lines indicate con-
nections between agents. Second network is a small-world network con-
structed from the first network in Fig. 1(a) by going through a cycle of
edge rewiring. This cycle goes through all nodes in order and each edge
that connects the node in consideration to some other node is reconnected
to another random node with rewiring probability pr . The addition of
these connections reduces the average path length of the network’s graph.
A small-world network generated with rewiring probability pr = 0.1 is
depicted in Fig. 1(b). Both networks entail two stubborn agents in the
set S = {1, 2} marked with dotted squares at locations r1 = (67, 79)
and r2 = (20, 3). Stubborn agents have set extreme opinions x1(t) = 1
and x2(t) = −1. The remaining agents i ∈ V/S are compliant. They

start with a random opinion uniformly drawn from [−1, 1]. We assume
agents become active independent of each other and that times between
activations of user i are exponentially distributed with parameter μ = 1.
The chosen rate of activation μ = 1 corresponds to an average of 50
activations per agent over the whole time horizon. Opinions are updated
using the rational action in (8) superimposed with zero mean noise. The
noise is chosen as uniformly distributed in [−α, α] with α = 0.1.

The evolution of individual opinions for both geometric and small-
world network structures during t = 100 time units is presented in figs.
2(a)-(b), respectively. For the geometric network (Fig. 2(a)), the emer-
gence of three opinion clusters is clear after around t = 20. Two of these
clusters settle on opinions between the intervals 0.5 < xi(50) < 0.9
and −0.9 < xi(50) < −0.5 corresponding to strong support for the
opinion of agents 1 and 2, respectively. The third cluster settles on opin-
ions between the intervals −0.25 < xi(50) < 0.25 corresponding to
weak support for agent 1 or 2. Only 14 agents settle into intermedi-
ate opinions not belonging to any of these clusters without themselves
clustering around a particular opinion. It is noticeable that agents in
the clusters with strong support for either opinion are in close proxim-
ity of the corresponding stubborn agent. Strong supporters of agent 1,
i.e., those in the cluster {i : 0.5 < xi(50) < 0.9}, are located in the
upper-right quadrant. Strong supporters of agent 2, i.e, those in the clus-
ter {i : −0.9 < xi(50) < −0.5}, are located in the lower-left quad-
rant. Weak supporters of either agent are located in either upper-left or
lower-right quadrant. This outcome is based on how the specific network
structure facilitates the propagation of opinions.

For the small-world network (Fig 2(b)), the decrease in average dis-
tance between agents decreases the influence of stubborn agents. The
total number of strong supporters of either extreme opinion drops from
39 in the geometric network case (cf. Fig. 2(a)) to 8 in the small-world
network case (Fig. 2(b)). Further the value of the strongest supporter for
opinion 1 drops from 0.89 to 0.52 and similarly the value of the strongest
supporter for opinion −1 rises from −0.87 to −0.6.
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