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ABSTRACT

Gossiping models have been increasingly applied to study social net-
work phenomena, in particular, to model the dynamics of social be-
havior or belief through local interactions. In this context, this paper
investigates how the opinions of social agents diffuse in a network
under a so-called hard-interaction model, in which the agents inter-
act more strongly with neighbors that share their beliefs and have
no influence on the neighbors whose opinions differ by more than
a threshold. We analyze the convergence properties of the opinion
dynamics and provide analytical insights to characterize the phase
transition from a society of radicalized opinions to one of conver-
gent behavior.

Index Terms— opinion diffusion, opinion dynamics, social net-
works, phase transition, herding.

1. INTRODUCTION

The study of the convergence of social behavior can be found in
many fields. Examples include, but are not limited to the herd-
ing behavior [1] in Economics, the fad and trend behaviors [2] in
Social Psychology, and the Bandwagon effect [3] in political sci-
ence. A number of different approaches to elucidate these phenom-
ena have emerged. Two prominent classes of models have been stud-
ied extensively, namely, Bayesian models and non-Bayesian models.
Bayesian models [1, 2] view individuals as rational agents: opin-
ions (or beliefs) of agents are probabilities of a given state, condi-
tioned on all the available information; opinions are updated using
Bayes rule, with information communicated through neighbors’ ac-
tions. Bayesian models focus on the mechanism of propagating in-
formation from one agent to another for optimal decision-making.
However, because of the complexity required to describe the diffu-
sion of opinions in a network of rational agents only simple sequen-
tial interactions can be fully analyzed. Models based on sequential
interactions usually assume that agents enter the society/market one
by one, and each makes an irreversible decision by only observing
the actions of its predecessors. This assumption can be well justi-
fied in certain specific cases, but it is hard to generalize to random
interactions between agents in a network. This motivates the study
of non-Bayesian models [4, 5, 6, 7, 8, 9, 10] which use simple and
heuristic local belief updating rules to characterize agents’ interac-
tions in a network. Non-Bayesian models aim to capture the opinion
dynamics in a network and model how the initial opinions and the
underlying social network structure affect the alignment of social
behavior. Earlier non-Bayesian formulations include [4, 5] which
model the interactions based on simple synchronous linear updates:
individuals assign suitable weights to their interacting agents on the
basis of relative importance. The updating rule has the same form as
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the well studied average consensus algorithm [11], and thus the con-
vergence analysis is straight forward. Another class of non-Bayesian
model is the so called Hegselmann-Krause (HK) model [7, 8, 9], in
which agents update their opinions using a nonlinear model: inter-
actions are performed through a synchronous update by averaging
all the opinions that differ by less than a confidence level ε; the rate
of change in opinions is determined by a convergence parameter μ
(that is constant in time and across the network). Similar studies
have also explored the effects of simple interactions between two
neighboring agents. For example, Deffuant et al. [10] modeled the
network on a square grid, in which the agents can only communi-
cate with their four immediate neighbors and exchange their beliefs
with a fixed weight parameter if the distance in opinion is smaller
than a given threshold. Weisbuch [12] extended this simple lattice
topology to a scale free network model and also examined the con-
vergence property using a heterogeneous constant threshold. The
focus of these papers is on the modeling of social interactions and
on how to reach opinion consensus. Analysis of the above nonlinear
models is generally carried out by extensive computer simulations,
but explicit mathematical results are limited.

In this paper, we explore a theoretical framework called the
hard-interaction model, to provide analytical insights on the asymp-
totic behavior of a social group in relation to the agents’ initial
opinion profile and the underlying network structure. The hard-
interaction model generalizes the binary decision making (decision
between two alternatives) as assumed in [7, 8, 9, 12] to the multi-
alternative decision making (decision between multiple alternatives).
Specifically, rather than restricting the opinions to lie in a bounded
(real) interval, we treat each agent’s opinion as a vector of probabil-
ities; each element of the opinion vector represents the probability
that a certain alternative is true. Furthermore, we extend the HK
model by introducing a trust function ρ similar in spirit to the con-
vergence parameter μ defined in [7, 8, 9, 10, 12], but allowing the
trust function ρ to vary with the opinion distance between the in-
teracting agents. Hence, ρ is time varying and its value depends on
how the distance is defined. Finally, we let the underlying social
network to be any arbitrarily connected network. Agent interactions
are pairwise random encounters. Opinion updates are as follow: the
distance between the opinions of two interacting agents decreases
only if the previous distance between their opinions is smaller than
a threshold τ , otherwise the opinions remain unchanged; the rate
of change of the opinion distance is governed by the time-varying
function ρ. (Note that if ρ is kept constant and L1-norm is used to
measure the opinion distance, then our model is analogous to the HK
model for binary decision making.) The contribution of this paper
is three-fold: (i) we provide analytical insights on the asymptotic
behavior of the social group and show the existence of a phase tran-
sition from diverging clusters of opinions to herding; (ii) we prove
that a necessary condition for society to herd with probability 1 is
that the threshold τ be strictly greater than the expected initial opin-
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ion distance, averaged over the edge probability distribution; (iii)
we also show that if the social fabric, represented by the probability
distribution of pairwise communications, is random and independent
of the initial belief distribution, then the social fabric does not effect
the phase transition towards herding. All our findings are validated
numerically.

2. INTERACTION MODEL

In our model there are V = {1, 2, · · · , n} social agents. They can
interact with other agents at random, but only if they are connected
through an edge of a fixed communication graph Gc = (V, Ec),
where Ec is the set of edges. Throughout the paper, Gc is assumed to
be connected and Nj denotes the set of neighbors of agent j, whose
cardinality |Nj | is called the degree of agent j. We model the jth
agent’s opinion as a q-dimensional vector xj = [xj1, · · · , xjq] in
X = {x = [x1, · · · , xq] | ∑q

�=1 x� = 1 and x� ∈ [0, 1]}. Al-
though this is not critical for the technical derivations, we can in-
terpret xk as a conditional probability P (θk|ξi), where θ1, · · · , θq
are q < n possible outcomes of an experiment Θ, and ξi is the ith
agent’s private information on Θ, generated from a certain probabil-
ity measure P (ξ|θ). The vector xj [0] is the belief of agent j prior to
any interaction, while xj [k] represents the belief after k interactions.
In our simulations, the initial beliefs xj [0] of the agents are drawn
from a uniform distribution over X .

We introduce a proper distance function d(xi,xj) : X × X →
R

+ (R+ is the set of real non-negative numbers) to measure the
degree of agreement between agents i and j. With respect to the
norm ‖xj‖ := d(xj ,xj), we assume that the set X is bounded,
i.e., supj‖xj‖ < ∞ ∀xj ∈ X and ∀j ∈ V . Hence, d(xi,xj) ≤
2supi‖xi‖ := dmax using the triangular inequality. Agents in the
network interact at random and change their beliefs. We define a
time-invariant vector p whose ith element pi is the probability of
node i initiating an interaction and the stochastic matrix P whose
(i, j)th element Pij denotes the probability that node i will choose
to interact with node j. Matrix P is assumed to have the same struc-
ture as Gc: if an edge (i, j) does not exist in Gc, then Pij = 0. We
assume Pii = 0 and that the matrix P is fixed. Let x′ and d′ denote
the variables after a generic update and dij [k] denotes the distance
d(xi[k],xj [k]) after k network-wise interactions have occurred. It
is assumed that the distance between beliefs after an update cannot
be larger than that before the update. Formally, the degree of change
in belief is captured by a discontinuous function ρ(d) according to
the following nonlinear model:

(a1) dij [k + 1] = (1− εkρ(dij [k])) dij [k] , (1)

where εk denotes the step-size. For technical reasons, we need

(a2) εk :
∑∞

k=1 εk → ∞ ,
∑∞

k=1 ε
2
k ≤ ∞ .

One example of an interaction that leads to (1) is d(x′
i,x

′
j) =

d(xi,xj)−d(xi,x
′
i)−d(xj ,x

′
j), which geometrically means that

the beliefs are moving closer through the shortest path connecting
them. Regarding (1), the following assumptions hold.

(a3) ρ(d) is a non-increasing function of d.

(a4) ρ(d) is C2-differentiable and 0 < ρ(d) ≤ 1/εk ∀d ∈ [0, τ).
(a5) τ : ∀d ≥ τ → ρ(d) = 0 .
(a6) ρ(0)/ρ(τ−) ≤ β < ∞ .
(a7) h(d) = ρ(d)d is concave ∀d ∈ [0, τ).

Specifically, ρ(d) represents the degree of change in opinion dis-
tance after each interaction. (a3) implies that agents interact
strongly (i.e., large displacement of belief) with neighbors that
share their beliefs, and (a5) indicates that agents have no influence
on the neighbors whose opinions differ by more than τ , where τ is

a measure of how openminded a society is. For the communication
model, we have Pij > 0 ↔ (i, j) ∈ Ec. Define P to be an n × n
matrix containing the probability that the pair (i, j) performs an
exchange, i.e., P ij = piPij + pjPji . The uniform communication
model corresponds to the selection of homogenous rates pi = 1/n,
and Pij = 1/|Ni|, uniform across neighbors ∀k.

We say that the network attains consensus (herding) iff ∀i, j ∈
V, d(xi[k],xj [k]) = 0 for some k. This does not imply, how-
ever, that all agents are certain about a specific outcome of an ex-
periment Θ, i.e., limk→∞ xi,�[k] = x∞

� 
= δ(	 − 	∗) for some
	∗ ∈ [1, · · · , q]. In other words, consensus is achieved when all
agents have the same belief vector w.r.t the distance measure, but
need not believe in only one outcome. If network-wide consen-
sus is not reached, it is possible that the network evolves into non-
interacting sub-networks (herds), each of which is internally in con-
sensus; we call such a process radicalization.

3. ANALYSIS

Under (a2), using stochastic approximation theory [13], we can map
(1) onto the ordinary differential equation (ODE),

ḋij = −ρ(dij)dij , (2)

in which ḋij is the derivative of dij with respect to a continuous
variable t replacing the discrete index k. For the sake of notational
convenience, we do not explicitly show that time variable t in (2) and
the rest of this section. Let d be the average of dij over the edges
(i, j) ∈ Ec, i.e. d :=

∑
(i,j)∈Ec

P ijdij . Then, using (2), we get

ḋ = −
∑

(i,j)∈Ec

P ijρ(dij)dij . (3)

Let S = {(i, j) ∈ Ec|dij ≤ d}. Under (a3) and ∀(i, j) ∈ S,

ρ(dij) ≥ ρ(d) and thus ḋ ≤ −
[∑

(i,j)∈SP ijdij
]
ρ(d) which

equals to zero when either ρ(d) = 0 or
∑

(i,j)∈SP ijdij = 0. If
both are positive, then the system has to converge. However, as S
changes dynamically, deriving a sufficient condition is not trivial: in
remark 1, we show through a counterexample that ρ(d) > 0 is not
a sufficient condition for convergence. We next establish a lower

bound on the rate change ḋ.

Property 1 Under (a3), (a5)−(a7), when d < τ , the system in (3)

is lower bounded by ḋ ≥ −βρ(d)d .

Proof See Appendix. �

Based on the above result, it is expected that (3) will not con-
verge if the lower bound does not converge. For convenience, we
use b instead of d to denote the distance for the lower bound system
whose dynamic is expressed as ḃ = −βρ(b)b. In fact, the dynamic
of b locally resembles the form of the logistic equation which is in-
vestigated in the next lemma.

Lemma 1 Assume that the network is connected. Under (a1) −
(a7), the system ḃ = −βρ(b)b converges if τ > b(0).
Proof See Appendix. �

Given that (3) is lower bounded by −βρ(d)d and Gc is con-
nected, we use the previous lemma to establish a necessary condition
for (3) to converge under the proposed model in (1).

Lemma 2 Assume that the network is connected. Under (a1) −
(a7), a necessary condition for the system in (3) to converge almost
surely is τ > d[0].

3074



Proof From Lemma 1, the system ḃ = −βρ(b)b converges if τ >
b(0). Because (3) is lower bounded by this system, given a threshold
τ , (3) will not converge if τ ≤ d(0), or d[0] w.r.t. the discrete-time
system in (1). �

Lemma 2 indicates that the system will converge if the threshold
is above d[0], the average initial distance between agent pairs that
can interact. In other words, if the system is open-minded enough
(relative to this initial dissonance in opinions), then the system will
converge. Interestingly, what we observe from the numerical results
(shown in the next section) is that the interaction model exhibits a
phase transition from radicalization to herding whenever τ is chosen
sufficiently above d[0]. The following remark is in order:

Remark 1 Let there be two groups H1 and H2, where agents have
opinions with zero distance within each group, but ∀(i, j) : i ∈
H1, j ∈ H2 , dij = τ + ε. Then if

∑
(i,j)∈H1×H2

P ij < τ
τ+ε

,
it is easy to see that d[0] < τ . This network cannot converge be-
cause the two groups do not communicate, as the rate ρ(dij) =
0 ∀(i, j) : i ∈ H1, j ∈ H2. However, ρ

(
d[0]

)
> 0 which proves

that it is not a sufficient condition for herding. Note that in this case,∑
(i,j)∈SP ijdij [0] = 0.

4. HOW COMMUNICATION RATES AFFECT HERDING

In the following lemma, we show that social fabrics will, on average,
exhibit the same phase transition.

Lemma 3 Let dc[0] be the expected initial opinion distance between
any two agents in the set V . If the connected graph Gc and P ij

are random, and they are independent of the initial opinion distance
dij [0], then E

[
d[0]

]
= dc[0] , with respect to Gc and the initial

distance distribution.

Proof See Appendix. �

In our simulations, we will verify this analytical result and compare
it with a heuristic that seeks to decrease the initial opinion distance
d[0]. Specifically, we re-distribute the communication rates by uni-
formly assigning positive interaction rate to the neighboring agents
(i, j) ∈ Ec who have similar initial beliefs (below the threshold) and
zero interaction rate to the agents whose initial beliefs are above the
threshold. Formally, denote by Mi the neighbors of agent i in the
set Eeff [0] = {(i, j) ∈ Ec|dij [0] < τ} and |Mi| its cardinality. The
uniform communication over Eeff [0] is defined as

pi =
1

n
, Pij =

{
1

|Mi| if (i, j) ∈ Eeff [0] ,

0 otherwise.
(4)

This redistribution causes the interaction probability to be correlated
with the opinion distance resulting in a twofold benefit: it decreases
the expected initial distance d[0] which is closely related to the crit-
ical threshold, and the communications are not wasted on the agents
that have little influence on each other, if at all.

5. SIMULATIONS

5.1. Phase Transition

Fig. 1 shows the asymptotic algebraic connectivity of a graph
Geff [k] := {V, Eeff [k]} where Eeff [k] = {(i, j) ∈ Ec|dij [k] < τ},
w.r.t. τ for n = 50, n = 100 and n = 200 after k = 2000
network-wise interactions. Distance is measured in the L2-norm

and Gc is fully connected. (Note that Lemma 1 and 2 hold for any
connected network. The choice of using a fully connected network
is arbitrary.) The plot is generated by averaging over 300 runs. Each
starts with an uniformly distributed random initial beliefs and ends
after 2000 random interactions using the uniform communication
rate (i.e., pi = 1/n and Pij = 1/(n−1)) and a function ρ(d) which
equals to 1 for 0 ≤ d < τ and zero otherwise. Note that β = 1
in this case. From Fig. 1, one observes that there exists a phase
transition from a society of radicalized opinions to a society with
consistent opinion at a critical threshold. The network converges
with probability one if τ is above a threshold which is observed to
be around 0.75. We have learned, from Lemma 2, that a necessary
condition for the system to converge is that τ > d[0], where d[0]
is the expected opinion distance at k = 0 and is represented by the
dotted line. For all τ < d[0], with a high probability, the system will
not converge as n increases.
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Fig. 1. Phase transition (top) of a society from radicalized beliefs to
a consistent belief. Histogram (bottom) of 300 asymptotic opinion
profiles with n = 100 at τ = 0.4, 0.6, 0.8.

5.2. Rate of Interaction

Fig. 2 compares the phase transitions for the original uniform rate of
interaction in Ec and the heuristic described in (4) over three random
geometric networks (RGG) of n = 50 agents. (Note that the choice
of RGG is arbitrary.) Each has a distinct radius of communication
α ∈ [0, 1]. In particular, α = 1 represents a fully connected Gc

and α = 0 corresponds a fully disconnected network. Distance is
measured in the L2-norm. The plot is generated by averaging over
600 runs with uniformly distributed random initial beliefs over X of
dimension 3 after k = 2000 random interactions. Observe that the
performances for α = 1, 0.8 and 0.6 are similar when the underlying
network is connected and independent of dij [0]. It is consistent with
our findings, given in Lemma 2 and Lemma 3. In contrast, when
P ij is correlated with dij [0] through the rate re-distribution (4), the
probability of forming a convergent belief increases. For example,
with τ = 0.5 in a fully connected network, i.e., α = 1, the probabil-
ity of the agents forming a convergent belief increases from 0.15 to
0.95.

6. CONCLUSION

We proposed a hard-interaction model for social networks and ana-
lyzed its convergence properties in terms of the expected initial opin-
ion distance. By describing the opinion dynamics as the change in
distance between opinions, we demonstrated the existence of a phase
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Fig. 2. Performance comparison between uniform random and the
heuristic communication-rate schemes.

transition w.r.t. the opinion threshold and proved that the critical
threshold is lower bounded by the expected initial opinion distance.

7. APPENDIX

Property 1: Let Eeff = {(i, j) ∈ Ec|dij < τ} and Ec
eff =

{(i, j) ∈ Ec|dij ≥ τ} be the complement of Eeff in Ec. De-
fine Peff :=

∑
(i,j)∈Eeff

P ij and deff :=
∑

(i,j)∈Eeff
P ijdij .

Under (a7), Jensen’s inequality and the relation deff ≤ d yield∑
(i,j)∈Eeff

P ij

Peff
h(dij) ≤ deff

Peff
ρ
(

deff
Peff

)
≤ d

Peff
ρ
(
deff

)
. Since

ρ(d�m) = 0 for ∀(	,m) ∈ Ec
eff , hence

∑
(i,j)∈Ec

P ijh(dij) =∑
(i,j)∈Eeff

P ijh(dij) ≤ dρ(deff) . Since deff < d < τ , un-

der (a3) and (a6), ρ(deff)/ρ(d) ≤ ρ(0)/ρ(τ−) ≤ β. Hence,∑
(i,j)∈Ec

P ijh(dij) ≤ βρ(d)d.

0

0R>

ξ

ξ̇

K

Fig. 3. Vector Field: the point ξ(s; t) moves toward the stable fixed
point ξ1 = 0 if ξ(0; t) < K. Otherwise, it moves away from ξ1.

Lemma 1: Suppose that b(t + s) is in a neighborhood of
b(t) provided that s is small. Hence, Taylor’s expansion gives
ρ (b(t+ s)) ≈ ρ (b(t)) + (b(t+ s)− b(t)) ρ̇ (b(t)). Then system

ḃ(t+ s) = −βρ(b(t+ s))b(t+ s) becomes

ḃ(t+ s) =

{ −βρ(b(t))b(t+ s) if ρ̇ (b(t)) = 0;
−f(s; t) if ρ̇ (b(t)) < 0.

where f(s; t) = β
[
ρ (b(t))− b(t)ρ̇ (b(t))

(
1− b(t+s)

b(t)

)]
b(t + s)

and ρ̇(b) := dρ/db. In the first case, ρ(b(t)) is locally constant
and hence, the local rate of convergence around b(t) is exponential
and is equal to ρ (b(t)) when ρ (b(t)) > 0, i.e., b(t) < τ . For the
second case when ρ̇ (b(t)) < 0, define ξ(s; t) := b(t + s)/b(t).
With respect to s, the dynamics of ξ become

ξ̇(s; t) =
1

b(t)
ḃ(t+ s) = −βR(t)ξ(s; t)

(
1− ξ(s; t)

K(t)

)
, (5)

where R(t) = ρ (b(t))− b(t)ρ̇ (b(t)) , (6)

K(t) = 1 +
ρ (b(t))

−b(t)ρ̇ (b(t))
> 1 . (7)

Note that the dynamics of ξ(s; t) resemble the logistic equation.
There exists two equilibria at ξ1 = 0 (stable) and ξ2 = K(t) (un-
stable). When R(t) > 0, as shown in Fig. 3, the system will con-
verge if K(t) > ξ(0; t) = 1. Indeed, if b(t) < τ , then K(t) =

1 − ρ(b(t))
b(t)ρ̇(b(t))

> 1. and (5) converges. The exponential rate of

convergence equals R(t). Moreover, since b(t) is a monotonically
decreasing function of t, an equivalent condition for convergence is
b(0) < τ . On the contrary, when b(t) = τ , we get K(t) = 1 be-
cause ρ(τ) = 0. For b(t) > τ , both ρ (b(t)) and ρ̇ (b(t)) are zero,
which implies R(t) = 0 in (5) and bifurcation occurs. Thus the
system may not converge when b(t) ≥ τ for ∀t.

Lemma 3: Define dc[0] := E{dij [0]} to be the expected initial
distance between any agents in V . Since the rates P ij are random
and independent of dij [0], then

E

[
d̄(0)

]
= E

[∑
(i,j)∈Ec

P ijE

[
dij [0]|P ij

]]

= E

[∑
(i,j)∈Ec

P ij

]
dc[0] = dc[0] .
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